ON SOME NEW EMBEDDING THEOREMS FOR SOME ANALYTIC CLASSES IN THE UNIT BALL
Journal of nonlinear sciences and its applications, Tome 2 (2009) no. 4, p. 243-250.

Voir la notice de l'article provenant de la source International Scientific Research Publications

We provide new sharp embedding theorems for analytic classes in unit ball expanding at the same time some previously known assertions.
DOI : 10.22436/jnsa.002.04.06
Classification : 32A10, 32A37
Keywords: Area operator, Bergman metric, Bergman metric ball, Carleson measure, Hardy class, nonisotropic ball.

SHAMOYAN , ROMI  1 ; RADNIA, MEHDI 2

1 Department of Mathematics, Erevan State University , Armenia.
2 Department of Mathematics, Tabriz University, Tabriz, Iran.
@article{JNSA_2009_2_4_a5,
     author = {SHAMOYAN , ROMI  and RADNIA, MEHDI},
     title = {ON {SOME} {NEW} {EMBEDDING} {THEOREMS} {FOR} {SOME} {ANALYTIC} {CLASSES} {IN} {THE} {UNIT} {BALL}},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {243-250},
     publisher = {mathdoc},
     volume = {2},
     number = {4},
     year = {2009},
     doi = {10.22436/jnsa.002.04.06},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.002.04.06/}
}
TY  - JOUR
AU  - SHAMOYAN , ROMI 
AU  - RADNIA, MEHDI
TI  - ON SOME NEW EMBEDDING THEOREMS FOR SOME ANALYTIC CLASSES IN THE UNIT BALL
JO  - Journal of nonlinear sciences and its applications
PY  - 2009
SP  - 243
EP  - 250
VL  - 2
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.002.04.06/
DO  - 10.22436/jnsa.002.04.06
LA  - en
ID  - JNSA_2009_2_4_a5
ER  - 
%0 Journal Article
%A SHAMOYAN , ROMI 
%A RADNIA, MEHDI
%T ON SOME NEW EMBEDDING THEOREMS FOR SOME ANALYTIC CLASSES IN THE UNIT BALL
%J Journal of nonlinear sciences and its applications
%D 2009
%P 243-250
%V 2
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.002.04.06/
%R 10.22436/jnsa.002.04.06
%G en
%F JNSA_2009_2_4_a5
SHAMOYAN , ROMI ; RADNIA, MEHDI. ON SOME NEW EMBEDDING THEOREMS FOR SOME ANALYTIC CLASSES IN THE UNIT BALL. Journal of nonlinear sciences and its applications, Tome 2 (2009) no. 4, p. 243-250. doi : 10.22436/jnsa.002.04.06. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.002.04.06/

[1] Alexandrov, A. B. Function Theory in the Ball, in Several Complex Variables II, Springer, New York, 1994

[2] Cascante, C.; Ortega, J. Carleson measures on spaces of Hardy-Sobolev type, Canad. J. Math, Volume 47(6) (1995), pp. 1177-1200 | DOI

[3] Cascante, C.; Ortega, J. On q-Carleson measures for spaces of M-harmonic functions, Canad. J. Math., Volume 49 (4) (1997), pp. 653-674 | Zbl | DOI

[4] Cascante, C.; Ortega, J. Imbedding potentials in tent spaces, J. Funct. Anal., Volume 198 (1) (2003), pp. 106-141 | DOI | Zbl

[5] Cohn, W. S. Generalized area operators on Hardy spaces, J Math Anal Appl., Volume 216 (1) (1997), pp. 112-121 | DOI

[6] Ortega, J.; Fàbrega, J. Hardys inequality and embeddings in holomorphic Triebel-Lizorkin spaces, Illinois J. Math., Volume 43 (4) (1999), pp. 733-751 | Zbl

[7] Ortega, J.; Fàbrega, J. Holomorphic Triebel-Lizorkin spaces, J. Funct. Anal., Volume 151 (1) (1997), pp. 177-212 | DOI

[8] Rudin, W. Function Theory in the Unit Ball of \(\mathbb{C}^{n}\), Springer-Verlag, New York, 1980

[9] Shamoyan, R.; Mihic, O. On some properties of holomorphic spaces based on Bergman metric ball and Luzin area operator, J. Nonlinear Sci. Appl., Volume 2 (3) (2009), pp. 183-194 | Zbl

[10] Wu, Z. Area operators on Bergman space, Sci.China Series A., Volume 36(5) (2006), pp. 481-507

[11] Zhu, K. Spaces of Holomorphic Functions in the Unit Ball, Springer Verlag, New York, 2005

Cité par Sources :