GENERALIZATION SOME FUZZY SEPARATION AXIOMS TO DITOPOLOGICAL TEXTURE SPACES
Journal of nonlinear sciences and its applications, Tome 2 (2009) no. 4, p. 234-242.

Voir la notice de l'article provenant de la source International Scientific Research Publications

The authors characterize the notion of quasi coincident in texture spaces and study the generalization of fuzzy quasi separation axioms defined by [12] to the ditopological texture spaces.
DOI : 10.22436/jnsa.002.04.05
Classification : 54A40, 54A10
Keywords: Quasi coincident, Quasi separation axiom, Ditopology

ERTÜRK, RIZA 1 ; DOST , ŞENOL  2 ; ÖZÇAG, SELMA 1

1 Department of Mathematics, University of Hacettepe, 06800 Beytepe, Ankara, Turkey.
2 Department of Secondary Science and Mathematics Education, University of Hacettepe , 06800 Beytepe, Ankara, Turkey.
@article{JNSA_2009_2_4_a4,
     author = {ERT\"URK, RIZA and DOST , \c{S}ENOL  and \"OZ\c{C}AG, SELMA},
     title = {GENERALIZATION {SOME} {FUZZY} {SEPARATION} {AXIOMS} {TO} {DITOPOLOGICAL} {TEXTURE} {SPACES}},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {234-242},
     publisher = {mathdoc},
     volume = {2},
     number = {4},
     year = {2009},
     doi = {10.22436/jnsa.002.04.05},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.002.04.05/}
}
TY  - JOUR
AU  - ERTÜRK, RIZA
AU  - DOST , ŞENOL 
AU  - ÖZÇAG, SELMA
TI  - GENERALIZATION SOME FUZZY SEPARATION AXIOMS TO DITOPOLOGICAL TEXTURE SPACES
JO  - Journal of nonlinear sciences and its applications
PY  - 2009
SP  - 234
EP  - 242
VL  - 2
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.002.04.05/
DO  - 10.22436/jnsa.002.04.05
LA  - en
ID  - JNSA_2009_2_4_a4
ER  - 
%0 Journal Article
%A ERTÜRK, RIZA
%A DOST , ŞENOL 
%A ÖZÇAG, SELMA
%T GENERALIZATION SOME FUZZY SEPARATION AXIOMS TO DITOPOLOGICAL TEXTURE SPACES
%J Journal of nonlinear sciences and its applications
%D 2009
%P 234-242
%V 2
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.002.04.05/
%R 10.22436/jnsa.002.04.05
%G en
%F JNSA_2009_2_4_a4
ERTÜRK, RIZA; DOST , ŞENOL ; ÖZÇAG, SELMA. GENERALIZATION SOME FUZZY SEPARATION AXIOMS TO DITOPOLOGICAL TEXTURE SPACES. Journal of nonlinear sciences and its applications, Tome 2 (2009) no. 4, p. 234-242. doi : 10.22436/jnsa.002.04.05. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.002.04.05/

[1] Brown, L. M. Ditopological fuzzy structures I, Fuzzy Systems a A. I M. 3 (1), , 1993

[2] Brown, L. M. Ditopological fuzzy structures II, Fuzzy Systems a A. I M. 3 (2), , 1993

[3] Brown, L. M. Quotients of textures and of ditopological texture spaces, Topology Proceedings, Volume 29 (2) (2005), pp. 337-368 | Zbl

[4] Brown, L. M.; Diker, M. Ditopological texture spaces and intuitionistic sets, Fuzzy sets and systems, Volume 98 (1998), pp. 217-224 | DOI | Zbl

[5] Brown, L. M.; Ertürk, R. Fuzzy sets as texture spaces, I. Representation theorems, Fuzzy Sets and Systems, Volume 110 (2) (2000), pp. 227-236 | DOI

[6] Brown, L. M.; Ertürk, R. Fuzzy sets as texture spaces, II. Subtextures and quotient textures, Fuzzy Sets and Systems, Volume 110 (2) (2000), pp. 237-245 | Zbl | DOI

[7] Brown, L. M.; Ertürk, R.; Dost, Ş. Ditopological texture spaces and fuzzy topology, I. Basic Concepts, Fuzzy Sets and Systems, Volume 147 (2) (2004), pp. 171-199 | Zbl | DOI

[8] Brown, L. M.; Ertürk, R.; Dost, Ş. Ditopological texture spaces and fuzzy topology, II. Topological Considerations, Fuzzy Sets and Systems, Volume 147 (2) (2004), pp. 201-231 | Zbl | DOI

[9] Brown, L. M.; Ertürk, R.; Dost, Ş. Ditopological texture spaces and fuzzy topology, III. Separation Axioms, Fuzzy Sets and Systems, Volume 157 (14) (2006), pp. 1886-1912 | Zbl | DOI

[10] Brown, L. M.; Gohar, M. Compactness in ditopological texture spaces, Hacettepe J. Math. and Stat., V., Volume 38(1) (2009), pp. 21-43

[11] Demirci, M. Textures and C-spaces, Fuzzy Sets and Systems, Volume 158 (11) (2007), pp. 1237-1245 | DOI | Zbl

[12] Ghanim, M. H.; Tantawy, O. A.; Selim, Fawzia M. On lower separation axioms, Fuzzy Sets and Systems, Volume 85 (1997), pp. 385-389 | DOI

[13] Gierz, G.; Hofmann, K. H.; Keimel, D.; Lawson, J.; Mislove, M.; Scott, D. A compendium of continuous lattices, Springer–Verlag, Berlin, Heidelberg, New York, 1980

[14] Hutton, B.; Reilly, I. Separation axioms in fuzzy topological spaces, Fuzzy Sets and Systems, Volume 3 (1980), pp. 93-104 | DOI

[15] Ming, P. Pao; Ming, L. Ying Fuzzy topology I, neighbourhood structure of a fuzzy point and Moore-Smith convergence, J. Math.Anal. Appl., Volume 76 (1980), pp. 571-599 | DOI

[16] Özçağ, S.; Brown, L. M. Dicompletion of plain diuniformities, Topology and its Applications (submitted)

[17] Tiryaki, I.; Brown, L. M. Plain textures and fuzzy sets over a poset (preprint)

Cité par Sources :