P-COMPACTNESS IN $L$ -TOPOLOGICAL SPACES
Journal of nonlinear sciences and its applications, Tome 2 (2009) no. 4, p. 225-233.

Voir la notice de l'article provenant de la source International Scientific Research Publications

The concepts of P-compactness, countable P-compactness, the P-Lindelöf property are introduced in $L$-topological spaces by means of preopen $L$ -sets and their inequalities when $L$ is a complete DeMorgan algebra. These definitions do not rely on the structure of the basis lattice $L$ and no distributivity in $L$ is required. They can also be characterized by means of preclosed L-sets and their inequalities. Their properties are researched. Further when $L$ is a completely distributive DeMorgan algebra, their many characterizations are presented.
DOI : 10.22436/jnsa.002.04.04
Classification : 03E72, 54A40, 54D30
Keywords: L-topology, fuzzy compactness, P-compactness, countable P-compactness, PLindelöf property.

SHI, FU-GUI 1

1 Fu-Gui Shi, Department of Mathematics, Beijing Institute of Technology, Beijing 100081, P.R. China
@article{JNSA_2009_2_4_a3,
     author = {SHI, FU-GUI},
     title = {P-COMPACTNESS {IN} {\(L\)} {-TOPOLOGICAL} {SPACES}},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {225-233},
     publisher = {mathdoc},
     volume = {2},
     number = {4},
     year = {2009},
     doi = {10.22436/jnsa.002.04.04},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.002.04.04/}
}
TY  - JOUR
AU  - SHI, FU-GUI
TI  - P-COMPACTNESS IN \(L\) -TOPOLOGICAL SPACES
JO  - Journal of nonlinear sciences and its applications
PY  - 2009
SP  - 225
EP  - 233
VL  - 2
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.002.04.04/
DO  - 10.22436/jnsa.002.04.04
LA  - en
ID  - JNSA_2009_2_4_a3
ER  - 
%0 Journal Article
%A SHI, FU-GUI
%T P-COMPACTNESS IN \(L\) -TOPOLOGICAL SPACES
%J Journal of nonlinear sciences and its applications
%D 2009
%P 225-233
%V 2
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.002.04.04/
%R 10.22436/jnsa.002.04.04
%G en
%F JNSA_2009_2_4_a3
SHI, FU-GUI. P-COMPACTNESS IN \(L\) -TOPOLOGICAL SPACES. Journal of nonlinear sciences and its applications, Tome 2 (2009) no. 4, p. 225-233. doi : 10.22436/jnsa.002.04.04. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.002.04.04/

[1] Chang, C. L. Fuzzy topological spaces, J. Math. Anal. Appl., Volume 24 (1968), pp. 182-190

[2] Dwinger, P. Characterizations of the complete homomorphic images of a completely distributive complete lattice I, Indagationes Mathematicae (Proceedings), Volume 85 (1982), pp. 403-414

[3] Gierz, G.; al., et A compendium of continuous lattices, Springer Verlag, Berlin, 1980

[4] Hanafy, I. M. \(\beta S^*\)-compactness in L-fuzzy topological spaces, J. Nonlinear Sci. Appl., Volume 2 (2009), pp. 27-37

[5] Janković, D.; Reilly, I.; Vamanamurthy, M. On strongly compact topological spaces, Questions Answers Gen. Topology, Volume 6 (1988), pp. 29-40

[6] Kudri, S. R. T.; Warner, M. W. Some good L-fuzzy compactness-related concepts and their properties II, Fuzzy Sets and Systems, Volume 76 (1995), pp. 157-168 | DOI | Zbl

[7] Liu, Y. M.; Luo, M. K. Fuzzy topology, World Scientific, Singapore, 1997

[8] Lowen, R. Fuzzy topological spaces and fuzzy compactness, J. Math. Anal. Appl., Volume 56 (1976), pp. 621-633

[9] Lowen, R. A comparision of different compactness notions in fuzzy topological spaces, J. Math. Anal. Appl., Volume 64 (1978), pp. 446-454 | DOI

[10] Mashhour, A. S.; El-Monsef, M. E. Abd.; Hasanein, I. A.; Noiri, T. Strongly Lindelöf spaces, Delta Journal of Science, Volume 8 (1984), pp. 30-46

[11] Nanda, N. Strongly compact fuzzy topological spaces, Fuzzy Sets and Systems, Volume 42 (1991), pp. 259-262 | DOI

[12] Shi, F.-G. Theory of \(L_\beta\)-nested sets and \(L_\alpha\) -nested and their applications, Fuzzy Systems and Mathematics, Volume 4 (1995), pp. 65-72 | Zbl

[13] Shi, F.-G. Countable compactness and the Lindelöf property of L-fuzzy sets, Iranian Journal of Fuzzy Systems, Volume 1 (2004), pp. 79-88 | Zbl

[14] Shi, F.-G. A new notion of fuzzy compactness in L-topological spaces, Information Sciences, Volume 173 (2005), pp. 35-48 | Zbl | DOI

[15] Shi, F.-G. A new definition of fuzzy compactness, Fuzzy Sets and Systems, Volume 158 (2007), pp. 1486-1495 | DOI

[16] Thakur, S. S.; Paik, P. Countably P-compact spaces, Sci. Phys. Sci., Volume 1 (1989), pp. 48-51

[17] Wang, G.-J. Theory of L-fuzzy topological space, Shaanxi Normal University Press, Xi’an, Chinese, 1988

Cité par Sources :