Voir la notice de l'article provenant de la source International Scientific Research Publications
Argyros, Ioannis K. 1 ; Hilout, Saïd 2
@article{JNSA_2009_2_3_a7, author = {Argyros, Ioannis K. and Hilout, Sa{\"\i}d}, title = {On multipoint iterative processes of efficiency index higher than {Newton's} method}, journal = {Journal of nonlinear sciences and its applications}, pages = {195-203}, publisher = {mathdoc}, volume = {2}, number = {3}, year = {2009}, doi = {10.22436/jnsa.002.03.08}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.002.03.08/} }
TY - JOUR AU - Argyros, Ioannis K. AU - Hilout, Saïd TI - On multipoint iterative processes of efficiency index higher than Newton's method JO - Journal of nonlinear sciences and its applications PY - 2009 SP - 195 EP - 203 VL - 2 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.002.03.08/ DO - 10.22436/jnsa.002.03.08 LA - en ID - JNSA_2009_2_3_a7 ER -
%0 Journal Article %A Argyros, Ioannis K. %A Hilout, Saïd %T On multipoint iterative processes of efficiency index higher than Newton's method %J Journal of nonlinear sciences and its applications %D 2009 %P 195-203 %V 2 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.002.03.08/ %R 10.22436/jnsa.002.03.08 %G en %F JNSA_2009_2_3_a7
Argyros, Ioannis K.; Hilout, Saïd. On multipoint iterative processes of efficiency index higher than Newton's method. Journal of nonlinear sciences and its applications, Tome 2 (2009) no. 3, p. 195-203. doi : 10.22436/jnsa.002.03.08. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.002.03.08/
[1] Geometric constructions of iterative functions to solve nonlinear equations, J. Comput. Appl. Math., Volume 157 (2003), pp. 197-205
[2] On the Newton–Kantorovich hypothesis for solving equations, J. Comput. Appl. Math. , Volume 169 (2004), pp. 315-332
[3] A unifying local–semilocal convergence analysis and applications for two– point Newton–like methods in Banach space, J. Math. Anal. Appl. , Volume 298 (2004), pp. 374-397
[4] Approximating solutions of equations using Newton’s method with a modified Newton’s method iterate as a starting point , Revue d’Analyse Numér. Th. Approx. , Volume 36 (2007), pp. 123-137
[5] Approximating solutions of equations by combining Newton–like methods , J. Korea Soc. Math. Educ. Ser. B Pure Appl. Math. , Volume 15 (2008), pp. 35-45
[6] Convergence and Applications of Newton–type iterations, Springer–Verlag Publ., New York, 2008
[7] The theory and applications of iteration methods, Systems Engineering Series, CRC Press, Boca Raton, Florida, 1993
[8] An optimization of Chebyshev’s method, J. Complexity (in press.)
[9] Functional analysis in normed spaces, Pergamon Press, Oxford, 1982
[10] A variant of Newton’s method with accelerated third–order convergence, Appl. Math. Lett., Volume 13 (2000), pp. 87-93
Cité par Sources :