On multipoint iterative processes of efficiency index higher than Newton's method
Journal of nonlinear sciences and its applications, Tome 2 (2009) no. 3, p. 195-203.

Voir la notice de l'article provenant de la source International Scientific Research Publications

We provided a convergence analysis of third–order multipoint iterative processes of efficiency index higher than Newton’s. Our convergence analysis is finer than the corresponding one in [8], under the same or weaker hypotheses and computational cost.
DOI : 10.22436/jnsa.002.03.08
Classification : 65H10, 65H05, 47H99, 49M15
Keywords: Banach space, Multipoint iterative procedure, Newton–type method, Majorizing sequences

Argyros, Ioannis K. 1 ; Hilout, Saïd 2

1 Cameron university, Department of Mathematics Sciences, Lawton, OK 73505, USA.
2 Poitiers university, Laboratoire de Math´ematiques et Applications, Bd. Pierre et Marie Curie, T´el´eport 2, B.P. 30179, 86962 Futuroscope Chasseneuil Cedex, France.
@article{JNSA_2009_2_3_a7,
     author = {Argyros, Ioannis K. and Hilout, Sa{\"\i}d},
     title = {On multipoint iterative processes of efficiency index higher than {Newton's} method},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {195-203},
     publisher = {mathdoc},
     volume = {2},
     number = {3},
     year = {2009},
     doi = {10.22436/jnsa.002.03.08},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.002.03.08/}
}
TY  - JOUR
AU  - Argyros, Ioannis K.
AU  - Hilout, Saïd
TI  - On multipoint iterative processes of efficiency index higher than Newton's method
JO  - Journal of nonlinear sciences and its applications
PY  - 2009
SP  - 195
EP  - 203
VL  - 2
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.002.03.08/
DO  - 10.22436/jnsa.002.03.08
LA  - en
ID  - JNSA_2009_2_3_a7
ER  - 
%0 Journal Article
%A Argyros, Ioannis K.
%A Hilout, Saïd
%T On multipoint iterative processes of efficiency index higher than Newton's method
%J Journal of nonlinear sciences and its applications
%D 2009
%P 195-203
%V 2
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.002.03.08/
%R 10.22436/jnsa.002.03.08
%G en
%F JNSA_2009_2_3_a7
Argyros, Ioannis K.; Hilout, Saïd. On multipoint iterative processes of efficiency index higher than Newton's method. Journal of nonlinear sciences and its applications, Tome 2 (2009) no. 3, p. 195-203. doi : 10.22436/jnsa.002.03.08. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.002.03.08/

[1] Amat, S.; Busquier, S.; Gutiérrez, J. M. Geometric constructions of iterative functions to solve nonlinear equations, J. Comput. Appl. Math., Volume 157 (2003), pp. 197-205

[2] I. K. Argyros On the Newton–Kantorovich hypothesis for solving equations, J. Comput. Appl. Math. , Volume 169 (2004), pp. 315-332

[3] Argyros, I. K. A unifying local–semilocal convergence analysis and applications for two– point Newton–like methods in Banach space, J. Math. Anal. Appl. , Volume 298 (2004), pp. 374-397

[4] Argyros, I. K. Approximating solutions of equations using Newton’s method with a modified Newton’s method iterate as a starting point , Revue d’Analyse Numér. Th. Approx. , Volume 36 (2007), pp. 123-137

[5] Argyros, I. K. Approximating solutions of equations by combining Newton–like methods , J. Korea Soc. Math. Educ. Ser. B Pure Appl. Math. , Volume 15 (2008), pp. 35-45

[6] Argyros, I. K. Convergence and Applications of Newton–type iterations, Springer–Verlag Publ., New York, 2008

[7] Argyros, I. K.; F. Szidarovsky The theory and applications of iteration methods, Systems Engineering Series, CRC Press, Boca Raton, Florida, 1993

[8] Ezquerro, J. A.; Hernández, M. A. An optimization of Chebyshev’s method, J. Complexity (in press.)

[9] Kantorovich, L. V.; G. P. Akilov Functional analysis in normed spaces, Pergamon Press, Oxford, 1982

[10] Weerakoon, S.; Fernando, T. G. I. A variant of Newton’s method with accelerated third–order convergence, Appl. Math. Lett., Volume 13 (2000), pp. 87-93

Cité par Sources :