SOME PROPERTIES OF $L_{p,w} (0 p \leq 1)$
Journal of nonlinear sciences and its applications, Tome 2 (2009) no. 3, p. 174-179.

Voir la notice de l'article provenant de la source International Scientific Research Publications

In this article we explain some properties of $L_{p,w}$ when $0 p \leq 1$ and w is weight. These properties are general and we derive them from $L_p$ spaces.
DOI : 10.22436/jnsa.002.03.05
Classification : 57S25, 42C15, 46E15, 28E99
Keywords: Coorbit space, homogeneous, invariant, representation theory, square integrable, unimodular, unitary.

FAROUGHI , M. H.  1 ; RADNIA, M. 2

1 Department of Mathematics, Tabriz University, Tabriz, Iran.
2 Department of Mathematics, Tabriz University, Tabriz, Iran.
@article{JNSA_2009_2_3_a4,
     author = {FAROUGHI , M. H.  and RADNIA, M.},
     title = {SOME {PROPERTIES} {OF} {\(L_{p,w}} (0 < p \leq 1)\)},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {174-179},
     publisher = {mathdoc},
     volume = {2},
     number = {3},
     year = {2009},
     doi = {10.22436/jnsa.002.03.05},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.002.03.05/}
}
TY  - JOUR
AU  - FAROUGHI , M. H. 
AU  - RADNIA, M.
TI  - SOME PROPERTIES OF \(L_{p,w} (0 < p \leq 1)\)
JO  - Journal of nonlinear sciences and its applications
PY  - 2009
SP  - 174
EP  - 179
VL  - 2
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.002.03.05/
DO  - 10.22436/jnsa.002.03.05
LA  - en
ID  - JNSA_2009_2_3_a4
ER  - 
%0 Journal Article
%A FAROUGHI , M. H. 
%A RADNIA, M.
%T SOME PROPERTIES OF \(L_{p,w} (0 < p \leq 1)\)
%J Journal of nonlinear sciences and its applications
%D 2009
%P 174-179
%V 2
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.002.03.05/
%R 10.22436/jnsa.002.03.05
%G en
%F JNSA_2009_2_3_a4
FAROUGHI , M. H. ; RADNIA, M. SOME PROPERTIES OF \(L_{p,w} (0 < p \leq 1)\). Journal of nonlinear sciences and its applications, Tome 2 (2009) no. 3, p. 174-179. doi : 10.22436/jnsa.002.03.05. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.002.03.05/

[1] Christensen, O. An Introduction to Frame and Riesz Bases, Birkhauser, Boston, 2003 | DOI

[2] Dahlke, S.; Steidl, G.; Teschke, G. Coorbit spaces and Banach frames on homogeneous spaces with applications to the sphere, Advances in Computational Mathematics, Volume 21 (2004), pp. 147-180 | DOI | Zbl

[3] Dahlke, S.; Steidl, G.; Teschke, G. Weighted Coorbit Spaces and Banach Frames on Homogeneous Spaces, J. Fourier Anal. Appl., Volume 10 (2004), pp. 507-539 | Zbl | DOI

[4] Dahlke, S.; Fornasier, M.; Rauhut, H.; Steidl, G.; Teschke, G. Generalized Coorbit Theory, Banach Frames and the Relation to \(\alpha\)-Modulation Spaces, Bericht Nr., Philis- University of Marburg., 2005-6 | DOI | Zbl

[5] Feichtinger, H. G.; Gröchenig, K. A unified approach to atomic decompositions via integrable group representation, In: Proc. Conference on Functions, Spaces and Applications, Lund, 1986, Springer Lect. Notes Math., Volume 1302 (1988), pp. 52-73 | DOI | Zbl

[6] Feichtinger, H. G.; Gröchenig, K. Banach spaces related to integrable group representation and their atomic decompositions I, J. Funct. Anal., Volume 86 (1989), pp. 307-340 | DOI | Zbl

[7] Feichtinger, H. G.; Gröchenig, K. Banach spaces related to integrable group representation and their atomic decompositions II, Monatsh. Math., Volume 108 (1989), pp. 129-148 | DOI | Zbl

[8] Rudin, W. Functional Analysis, Mc Graw Hill Book company, NewYork, 1991

Cité par Sources :