COMMENTS ON THE PAPERS ARCH. MATH. BRNO, 422006, 51-58 - THAI J. MATH., 32005, 63-70 AND MATH. COMMUNICATIONS 132008, 85-96
Journal of nonlinear sciences and its applications, Tome 2 (2009) no. 3, p. 168-173.

Voir la notice de l'article provenant de la source International Scientific Research Publications

Using Dotsons' convexity structure, the authors in [16, 17, 18] established some deterministic and random common fixed point results. In this note, we comment that the proofs of the results in [16, 17, 18] are incomplete and incorrect.
DOI : 10.22436/jnsa.002.03.04
Classification : 47H10, 54H25
Keywords: Dotsons' convexity structure, Property (A), Common fixed point, Compatible maps.

HUSSAIN, N. 1

1 Department of Mathematics, King Abdul Aziz University P. O. Box 80203, Jeddah 21589 Saudi Arabia.
@article{JNSA_2009_2_3_a3,
     author = {HUSSAIN, N.},
     title = {COMMENTS {ON} {THE} {PAPERS} {ARCH.} {MATH.} {BRNO,} 422006, 51-58 - {THAI} {J.} {MATH.,} 32005, 63-70  {AND} {MATH.} {COMMUNICATIONS} 132008, 85-96},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {168-173},
     publisher = {mathdoc},
     volume = {2},
     number = {3},
     year = {2009},
     doi = {10.22436/jnsa.002.03.04},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.002.03.04/}
}
TY  - JOUR
AU  - HUSSAIN, N.
TI  - COMMENTS ON THE PAPERS ARCH. MATH. BRNO, 422006, 51-58 - THAI J. MATH., 32005, 63-70  AND MATH. COMMUNICATIONS 132008, 85-96
JO  - Journal of nonlinear sciences and its applications
PY  - 2009
SP  - 168
EP  - 173
VL  - 2
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.002.03.04/
DO  - 10.22436/jnsa.002.03.04
LA  - en
ID  - JNSA_2009_2_3_a3
ER  - 
%0 Journal Article
%A HUSSAIN, N.
%T COMMENTS ON THE PAPERS ARCH. MATH. BRNO, 422006, 51-58 - THAI J. MATH., 32005, 63-70  AND MATH. COMMUNICATIONS 132008, 85-96
%J Journal of nonlinear sciences and its applications
%D 2009
%P 168-173
%V 2
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.002.03.04/
%R 10.22436/jnsa.002.03.04
%G en
%F JNSA_2009_2_3_a3
HUSSAIN, N. COMMENTS ON THE PAPERS ARCH. MATH. BRNO, 422006, 51-58 - THAI J. MATH., 32005, 63-70  AND MATH. COMMUNICATIONS 132008, 85-96. Journal of nonlinear sciences and its applications, Tome 2 (2009) no. 3, p. 168-173. doi : 10.22436/jnsa.002.03.04. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.002.03.04/

[1] Akbar, F.; Khan, A. R. Common fixed point and approximation results for noncommuting maps on locally convex spaces, Fixed Point Theory and Appl., Volume 2009 (2009)

[2] Beg, I.; Khan, A. R.; Hussain, N. Approximation of *-nonexpansive random multivalued operators on Banach spaces, J. Aust. Math. Soc., Volume 76 (2004), pp. 51-66

[3] Berinde, V. Fixed point theorems for nonexpansive operators on nonconvex sets, Bul.- Stiint.-Univ.-Baia-Mare-Ser.-B, Volume 15 (1999), pp. 27-31

[4] Jr., W. J. Dotson On fixed points of nonexpansive mappings in nonconvex sets, Proc. Amer. Math. Soc., Volume 38 (1973), pp. 155-156

[5] N. Hussain Common fixed point and invariant approximation results, Demonstratio Math., Volume 39 (2006), pp. 389-400

[6] Hussain, N. Generalized I-nonexpansive maps and invariant approximation results in p- normed spaces, Analysis in Theory and Appl., Volume 22 (2006), pp. 72-80

[7] Hussain, N.; Berinde, V. Common fixed point and invariant approximation results in certain metrizable topological vector spaces, Fixed Point Theory and Appl., Volume 2006 (2006), pp. 1-13

[8] Hussain, N.; G. Jungck Common fixed point and invariant approximation results for noncommuting generalized (f; g)-nonexpansive maps, J. Math. Anal. Appl., Volume 321 (2006), pp. 851-861

[9] Hussain, N.; A. R. Khan Common fixed points and best approximation in p-normed spaces, Demonstratio Math., Volume 36 (2003), pp. 675-681

[10] Hussain, N.; O'Regan, D.; Agarwal, R. P. Common fixed point and invariant approximation results on non-starshaped domains, Georgian Math. J., Volume 12 (2005), pp. 659-669

[11] Hussain, N.; Rhoades, B. E. \(C_q\)-commuting maps and invariant approximations, Fixed Point Theory and Appl., Volume 2006 (2006), pp. 1-9

[12] Khan, A. R.; Hussain, N.; Thaheem, A. B. Applications of fixed point theorems to invariant approximation, Approx. Theory and Appl., Volume 16 (2000), pp. 48-55

[13] Khan, A. R.; Thaheem, A. B.; Hussain, N. Random fixed points and random approximations in nonconvex domains, J. Appl. Math. Stoch. Anal., Volume 15 (2002), pp. 263-270

[14] Khan, A. R.; Latif, A.; Bano, A.; Hussain, N. Some results on common fixed points and best approximation, Tamkang J. Math., Volume 36 (2005), pp. 33-38

[15] Mukherjee, R. N.; T. Som A note on an applications of a fixed point theorem in approximation theory, Indian J. Pure Appl. Math., Volume 16 (1985), pp. 243-244

[16] Nashine, H. K. Best approximation for nonconvex set in q-normed space, Arch. Math. (BRNO), Volume 42 (2006), pp. 51-58

[17] H. K. Nashine Common random fixed point and random best approximation, Thai J. Math., Volume 3 (2005), pp. 63-70

[18] Nashine, H. K.; R. Shrivastava Common fixed points and best approximants in non- convex domain, Mathematical Communications , Volume 13 (2008), pp. 85-96

[19] W. Rudin Functional Analysis, McGraw-Hill, New York, 1991

[20] Talman, L. A. A fixed point criterion for compact \(T_2\)-spaces, Proc. Amer. Math. Soc., Volume 51 (1975), pp. 91-93

Cité par Sources :