Voir la notice de l'article provenant de la source International Scientific Research Publications
JLELI , MOHAMED  1 ; SAMET, BESSEM 1
@article{JNSA_2009_2_3_a2, author = {JLELI , MOHAMED and SAMET, BESSEM}, title = {THE {KANNANS} {FIXED} {POINT} {THEOREM} {IN} {A} {CONE} {RECTANGULAR} {METRIC} {SPACE}}, journal = {Journal of nonlinear sciences and its applications}, pages = {161-167}, publisher = {mathdoc}, volume = {2}, number = {3}, year = {2009}, doi = {10.22436/jnsa.002.03.03}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.002.03.03/} }
TY - JOUR AU - JLELI , MOHAMED AU - SAMET, BESSEM TI - THE KANNANS FIXED POINT THEOREM IN A CONE RECTANGULAR METRIC SPACE JO - Journal of nonlinear sciences and its applications PY - 2009 SP - 161 EP - 167 VL - 2 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.002.03.03/ DO - 10.22436/jnsa.002.03.03 LA - en ID - JNSA_2009_2_3_a2 ER -
%0 Journal Article %A JLELI , MOHAMED %A SAMET, BESSEM %T THE KANNANS FIXED POINT THEOREM IN A CONE RECTANGULAR METRIC SPACE %J Journal of nonlinear sciences and its applications %D 2009 %P 161-167 %V 2 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.002.03.03/ %R 10.22436/jnsa.002.03.03 %G en %F JNSA_2009_2_3_a2
JLELI , MOHAMED ; SAMET, BESSEM. THE KANNANS FIXED POINT THEOREM IN A CONE RECTANGULAR METRIC SPACE. Journal of nonlinear sciences and its applications, Tome 2 (2009) no. 3, p. 161-167. doi : 10.22436/jnsa.002.03.03. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.002.03.03/
[1] Common fixed point results for noncommuting mappings without continuity in cone metric spaces, J. Math. Anal. Appl, Volume 341 (2008), pp. 416-420
[2] Banach contraction principle on cone rectangular metric spaces, Appl. Anal. Discrete Math (to appear)
[3] A fixed point theorem of Banach-Caccioppoli type on a class of generalized metric spaces, Publ. Math. Debrecen, Volume 57 1-2 (2000), pp. 31-37
[4] On generalization of Banach Contraction Principle, Indian J. Pure appl. Math, Volume 10 (1979), pp. 400-403
[5] On contraction type mappings, Math. Balkanica, Volume 1 (1971), pp. 52-57
[6] A generalization of Banach's contraction principle, Proc. Am. Math. Soc, Volume 45 (1974), pp. 267-273
[7] An extension of Banach contraction principle through rational expression, Indian J. Pure appl. Math, Volume 6 (1975), pp. 1455-1458
[8] Cone metric spaces and fixed point theorems of contractive mappings, J. Math. Anal. Appl, Volume 332 (2007), pp. 1468-1476
[9] Common fixed points for maps on cone metric space, J. Math. Anal. Appl, Volume 341 (2008), pp. 876-882
[10] Some results on fixed points, Bull. Cal. Math. Soc, Volume (60) 1-2 (1968), pp. 71-76
[11] Some results on fixed points-II , Amer. Math. Monthly, Volume 76 (1969), pp. 405-408
[12] A counterexample to ''Common fixed point theorem in probabilistic quasi-metric spaces'', J. Nonlinear Sci. Appl. , Volume 1 (2008), pp. 121-122
[13] Common fixed point theorem in probabilistic quasi- metric spaces, J. Nonlinear Sci. Appl. , Volume 1 (2008), pp. 31-35
Cité par Sources :