THE KANNANS FIXED POINT THEOREM IN A CONE RECTANGULAR METRIC SPACE
Journal of nonlinear sciences and its applications, Tome 2 (2009) no. 3, p. 161-167.

Voir la notice de l'article provenant de la source International Scientific Research Publications

Recently, Azam, Arshad and Beg introduced the notion of cone rectangular metric spaces by replacing the triangular inequality of a cone metric space by a rectangular inequality. In this paper, we extend the Kannan's fixed point theorem in such spaces.
DOI : 10.22436/jnsa.002.03.03
Classification : 47H10, 54E35, 54E50
Keywords: Cone rectangular metric space, Kannan's fixed point theorem.

JLELI , MOHAMED  1 ; SAMET, BESSEM 1

1 Department of Mathematics, Tunis College of Sciences and Techniques, 5 Avenue Taha Hussein, BP, 56, Bab Manara, Tunis.
@article{JNSA_2009_2_3_a2,
     author = {JLELI , MOHAMED  and SAMET, BESSEM},
     title = {THE {KANNANS} {FIXED} {POINT} {THEOREM} {IN} {A} {CONE} {RECTANGULAR} {METRIC} {SPACE}},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {161-167},
     publisher = {mathdoc},
     volume = {2},
     number = {3},
     year = {2009},
     doi = {10.22436/jnsa.002.03.03},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.002.03.03/}
}
TY  - JOUR
AU  - JLELI , MOHAMED 
AU  - SAMET, BESSEM
TI  - THE KANNANS FIXED POINT THEOREM IN A CONE RECTANGULAR METRIC SPACE
JO  - Journal of nonlinear sciences and its applications
PY  - 2009
SP  - 161
EP  - 167
VL  - 2
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.002.03.03/
DO  - 10.22436/jnsa.002.03.03
LA  - en
ID  - JNSA_2009_2_3_a2
ER  - 
%0 Journal Article
%A JLELI , MOHAMED 
%A SAMET, BESSEM
%T THE KANNANS FIXED POINT THEOREM IN A CONE RECTANGULAR METRIC SPACE
%J Journal of nonlinear sciences and its applications
%D 2009
%P 161-167
%V 2
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.002.03.03/
%R 10.22436/jnsa.002.03.03
%G en
%F JNSA_2009_2_3_a2
JLELI , MOHAMED ; SAMET, BESSEM. THE KANNANS FIXED POINT THEOREM IN A CONE RECTANGULAR METRIC SPACE. Journal of nonlinear sciences and its applications, Tome 2 (2009) no. 3, p. 161-167. doi : 10.22436/jnsa.002.03.03. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.002.03.03/

[1] Abbas, M.; Jungck, G. Common fixed point results for noncommuting mappings without continuity in cone metric spaces, J. Math. Anal. Appl, Volume 341 (2008), pp. 416-420

[2] Azam, A.; Arshad, M.; Beg, I. Banach contraction principle on cone rectangular metric spaces, Appl. Anal. Discrete Math (to appear)

[3] A. Branciari A fixed point theorem of Banach-Caccioppoli type on a class of generalized metric spaces, Publ. Math. Debrecen, Volume 57 1-2 (2000), pp. 31-37

[4] H. Chatterjee On generalization of Banach Contraction Principle, Indian J. Pure appl. Math, Volume 10 (1979), pp. 400-403

[5] Ciric, Lj. B. On contraction type mappings, Math. Balkanica, Volume 1 (1971), pp. 52-57

[6] Ciric, Lj. B. A generalization of Banach's contraction principle, Proc. Am. Math. Soc, Volume 45 (1974), pp. 267-273

[7] Dass, B. K.; Gupta, S. An extension of Banach contraction principle through rational expression, Indian J. Pure appl. Math, Volume 6 (1975), pp. 1455-1458

[8] Huang, L. G.; X. Zhang Cone metric spaces and fixed point theorems of contractive mappings, J. Math. Anal. Appl, Volume 332 (2007), pp. 1468-1476

[9] Ilic, D.; Rakocevic, V. Common fixed points for maps on cone metric space, J. Math. Anal. Appl, Volume 341 (2008), pp. 876-882

[10] R. Kannan Some results on fixed points, Bull. Cal. Math. Soc, Volume (60) 1-2 (1968), pp. 71-76

[11] Kannan, R. Some results on fixed points-II , Amer. Math. Monthly, Volume 76 (1969), pp. 405-408

[12] D. Mihet A counterexample to ''Common fixed point theorem in probabilistic quasi-metric spaces'', J. Nonlinear Sci. Appl. , Volume 1 (2008), pp. 121-122

[13] Shabani, A. R.; Ghasempour, S. Common fixed point theorem in probabilistic quasi- metric spaces, J. Nonlinear Sci. Appl. , Volume 1 (2008), pp. 31-35

Cité par Sources :