COMMON FIXED POINT THEOREMS FOR HYBRID MAPPINGS SATISFYING GENERALIZED CONTRACTIVE CONDITIONS
Journal of nonlinear sciences and its applications, Tome 2 (2009) no. 2, p. 136-145.

Voir la notice de l'article provenant de la source International Scientific Research Publications

We prove common fixed point theorems in symmetric spaces for two pairs of hybrid mappings using the concept of T−weakly and S−weakly commuting mappings satisfying generalized contractive conditions which generalize theorems of Aamri and El Moutawakil [J. Math. Anal. Appl., 270 (2002), 181–188.], Aamri and El Moutawakil [Appl. Math. E-notes., 3 (2003), 156–162.] and Aliouche [J. Math. Anal. Appl., 322 (2006), 796–802.].
DOI : 10.22436/jnsa.002.02.08
Classification : 47H10, 54H25
Keywords: Hybrid mappings, T−weakly commuting, property (E.A), common property (E.A), common fixed point, symmetric space.

ALIOUCHE, ABDELKRIM 1

1 Department of Mathematics, University of Larbi Ben M’Hidi, Oum-El-Bouaghi, 04000, Algeria.
@article{JNSA_2009_2_2_a7,
     author = {ALIOUCHE, ABDELKRIM},
     title = {COMMON {FIXED} {POINT} {THEOREMS} {FOR} {HYBRID} {MAPPINGS} {SATISFYING} {GENERALIZED} {CONTRACTIVE} {CONDITIONS}},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {136-145},
     publisher = {mathdoc},
     volume = {2},
     number = {2},
     year = {2009},
     doi = {10.22436/jnsa.002.02.08},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.002.02.08/}
}
TY  - JOUR
AU  - ALIOUCHE, ABDELKRIM
TI  - COMMON FIXED POINT THEOREMS FOR HYBRID MAPPINGS SATISFYING GENERALIZED CONTRACTIVE CONDITIONS
JO  - Journal of nonlinear sciences and its applications
PY  - 2009
SP  - 136
EP  - 145
VL  - 2
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.002.02.08/
DO  - 10.22436/jnsa.002.02.08
LA  - en
ID  - JNSA_2009_2_2_a7
ER  - 
%0 Journal Article
%A ALIOUCHE, ABDELKRIM
%T COMMON FIXED POINT THEOREMS FOR HYBRID MAPPINGS SATISFYING GENERALIZED CONTRACTIVE CONDITIONS
%J Journal of nonlinear sciences and its applications
%D 2009
%P 136-145
%V 2
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.002.02.08/
%R 10.22436/jnsa.002.02.08
%G en
%F JNSA_2009_2_2_a7
ALIOUCHE, ABDELKRIM. COMMON FIXED POINT THEOREMS FOR HYBRID MAPPINGS SATISFYING GENERALIZED CONTRACTIVE CONDITIONS. Journal of nonlinear sciences and its applications, Tome 2 (2009) no. 2, p. 136-145. doi : 10.22436/jnsa.002.02.08. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.002.02.08/

[1] Aamri, M.; D. El Moutawakil Some new common fixed point theorems under strict contractive conditions, J. Math. Anal. Appl., Volume 270 (2002), pp. 181-188

[2] Aamri, M.; Moutawakil, D. El Common fixed points under contractive conditions in symmetric spaces, Appl. Math. E-notes., Volume 3 (2003), pp. 156-162

[3] Aliouche, A. A common fixed point Theorem for weakly compatible mappings in symmetric spaces satisfying a contractive condition of integral type, J. Math. Anal. Appl., Volume 322 (2006), pp. 796-802

[4] Aliouche, A. Common fixed point theorems of Gregus type for weakly compatible mappings satisfying generalized contractive conditions, J. Math Anal. Appl., Volume 341 (2008), pp. 707-719

[5] A. Branciari A fixed point theorem for mappings satisfying a general contractive condition of integral type, Int. J. Math. Math. Sci., Volume 29 (2002), pp. 531-536

[6] Djoudi, A.; Aliouche, A. Common fixed point theorems of Gregus type for weakly compatible mappings satisfying contractive conditions of integral type, J. Math Anal. Appl., Volume 329 (2007), pp. 31-45

[7] D. El Moutawakil A fixed point theorem for multivalued maps in symmetric spaces, Applied Mathematics E-notes., Volume 4 (2004), pp. 26-32

[8] Hicks, T. L.; Rhoades, B. E. Fixed point theory in symmetric spaces with applications to probabilistic spaces, Nonlinear Analysis., Volume 36 (1999), pp. 331-344

[9] Itoh, S.; Takahashi, W. Single-valued mappings, Multivalued mappings and fixed point theorems, J. Math. Anal. Appl., Volume 59 (1977), pp. 514-521

[10] Jungck, G. Compatible mappings and common fixed points, Int. J. Math. Math. Sci., Volume 9 (1986), pp. 771-779

[11] Jungck, G. Common fixed points for non-continuous non-self maps on non metric spaces, Far East J. Math. Sci., Volume 4 (2) (1996), pp. 199-215

[12] T. Kamran Coincidence and fixed points for hybrid strict contractions, J. Math. Anal. Appl., Volume 299 (2004), p. 253-2

[13] Kaneko, H.; Sessa, S. Fixed point theorems for compatible multivalued and single valued mappings, Internat. J. Math. Math. Sci., Volume 12 (1989), pp. 257-262

[14] Liu, W.; Wu, J.; Li, Z. Common fixed points of single-valued and multi-valued maps, Internat. J. Math. Math. Sci., Volume 19 (2005), pp. 3045-3055

[15] Pant, R. P. Common fixed points of noncommuting mappings, J. Math. Anal. Appl., Volume 188 (1994), pp. 436-440

[16] Rhoades, B. E. Two fixed-point theorems for mappings satisfying a general contractive condition of integral type, Int. J. Math. Math. Sci., Volume 63 (2003), pp. 4007-4013

[17] S. Sessa On a weak commutativity condition of mappings in fixed point considerations, Publ. Inst. Math., (Beograd), Volume 32 (1982), pp. 149-153

[18] Sessa, S.; Khan, M. S.; Imdad, M. A common fixed point theorem with a weak commutativity condition, Glas. Math. Ser. III, Volume 21 (1986), pp. 225-235

[19] Shahzad, N.; Kamran, T. Coincidence points and R−weakly commuting maps, Arch. Math. (Brno) , Volume 37 (2001), pp. 179-183

[20] Singh, S. L.; Mishra, S. N. Coincidence and fixed points of non-self hybrid contractions, J. Math. Anal. Appl., Volume 256 (2001), pp. 486-497

[21] Vijayaraju, P.; Rhoades, B. E.; Mohanraj, R. A fixed point theorem for a pair of maps satisfying a general contractive condition of integral type, Int. J. Math. Math. Sci., Volume 15 (2005), pp. 2359-2364

[22] Wilson, W. A. On semi-metric spaces, Amer. J. Math., Volume 53 (1931), pp. 361-373

[23] Zhang, X. Common fixed point theorems for some new generalized contractive type mappings, J. Math. Anal. Appl., Volume 333 (2007), pp. 780-786

Cité par Sources :