POSITIVE SOLUTIONS FOR A CLASS OF SINGULAR TWO POINT BOUNDARY VALUE PROBLEMS
Journal of nonlinear sciences and its applications, Tome 2 (2009) no. 2, p. 126-135.

Voir la notice de l'article provenant de la source International Scientific Research Publications

Existence of positive solution for a class of singular boundary value problems of the type
$−x''(t) = f(t, x(t), x'(t)),\quad t \in (0, 1)$
$x(0) = 0, x(1) = 0,$
is established. The nonlinearity $f \in C((0, 1) \times (0,\infty) \times (−\infty,\infty), (−\infty,\infty))$ is allowed to change sign and is singular at $t = 0, t = 1$ and/or $x = 0$. An example is included to show the applicability of our result.
DOI : 10.22436/jnsa.002.02.07
Classification : 34A45, 34B15
Keywords: Positive solutions, Singular differential equations, Dirichlet boundary conditions.

KHAN, RAHMAT ALI 1 ; ASIF, NASEER AHMAD 1

1 Centre for Advanced Mathematics and Physics, National University of Sciences and Technology, Campus of College of Electrical and Mechanical Engineering, Peshawar Road, Rawalpindi, Pakistan
@article{JNSA_2009_2_2_a6,
     author = {KHAN, RAHMAT ALI and ASIF, NASEER AHMAD},
     title = {POSITIVE {SOLUTIONS} {FOR} {A} {CLASS} {OF} {SINGULAR} {TWO} {POINT} {BOUNDARY} {VALUE} {PROBLEMS}},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {126-135},
     publisher = {mathdoc},
     volume = {2},
     number = {2},
     year = {2009},
     doi = {10.22436/jnsa.002.02.07},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.002.02.07/}
}
TY  - JOUR
AU  - KHAN, RAHMAT ALI
AU  - ASIF, NASEER AHMAD
TI  - POSITIVE SOLUTIONS FOR A CLASS OF SINGULAR TWO POINT BOUNDARY VALUE PROBLEMS
JO  - Journal of nonlinear sciences and its applications
PY  - 2009
SP  - 126
EP  - 135
VL  - 2
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.002.02.07/
DO  - 10.22436/jnsa.002.02.07
LA  - en
ID  - JNSA_2009_2_2_a6
ER  - 
%0 Journal Article
%A KHAN, RAHMAT ALI
%A ASIF, NASEER AHMAD
%T POSITIVE SOLUTIONS FOR A CLASS OF SINGULAR TWO POINT BOUNDARY VALUE PROBLEMS
%J Journal of nonlinear sciences and its applications
%D 2009
%P 126-135
%V 2
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.002.02.07/
%R 10.22436/jnsa.002.02.07
%G en
%F JNSA_2009_2_2_a6
KHAN, RAHMAT ALI; ASIF, NASEER AHMAD. POSITIVE SOLUTIONS FOR A CLASS OF SINGULAR TWO POINT BOUNDARY VALUE PROBLEMS. Journal of nonlinear sciences and its applications, Tome 2 (2009) no. 2, p. 126-135. doi : 10.22436/jnsa.002.02.07. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.002.02.07/

[1] Afrouzi, G. A.; Moghaddam, M. Khaleghy; Mohammadpour, J.; Zameni, M. On the positive and negative solutions of Laplacian BVP with Neumann boundary conditions, J. Nonlinear Sci. Appl., Volume 2 (2009), pp. 38-45

[2] Agarwal, R. P.; Regan, D. O’ Twin solutions to singular Dirichlet problems, J. Math. Anal. Appl., Volume 240 (1999), pp. 433-445

[3] Agarwal, R. P.; Regan, D. O’ An upper and lower solution approach for a generalized Thomas-Fermi theory of neutral atoms, Mathematical Problems in Engineering, Volume 8 (2002), pp. 135-142

[4] Agarwal, R. P.; O’Regan, D. Singular differential and integral equations with applications, Kluwer Academic Publishers, London, 2003

[5] Agarwal, R. P.; O’Regan, D.; Palamides, P. K. The generalized Thomas-Fermi singular boundary value problems for neutral atoms, Math. Methods in the Appl. Sci., Volume 29 (2006), pp. 49-66

[6] Berg, M. van den; Gilkey, P.; R. Seeley Heat content asymptotics with singular initial temperature distributions, J. Funct. Anal., Volume 254 (2008), pp. 3093-3122

[7] Callegari, A.; Nachman, A. A nonlinear singular boundary value problem in the theory of pseudoplastic fluids, SIAM J. Appl. Math., Volume 38 (1980), pp. 275-282

[8] Chu, J.; Franco, D. Non-collision periodic solutions of second order singular dynamical systems, J. Math. Anal. Appl., Volume 344 (2008), pp. 898-905

[9] Chu, J.; Nieto, J. J. Impulsive periodic solutions of first-order singular differential equations, Bull. London Math. Soc., Volume 40 (2008), pp. 143-150

[10] Du, X.; Zhao, Z. Existence and uniqueness of positive solutions to a class of singular m-point boundary value problems, Appl. Math. Comput., Volume 198 (2008), pp. 487-493

[11] Fenga, M.; Gea, W. Positive solutions for a class of m-point singular boundary value problems, Math. Comput. Modelling , Volume 46 (2007), pp. 375-383

[12] Janus, J.; Myjak, J. A generalized Emden-Fowler equation with a negative exponent, Nonlinear Anal., Volume 23 (1994), pp. 953-970

[13] Khan, R. A. Positive solutions of four point singular boundary value problems, Appl. Math. Comput., Volume 201 (2008), pp. 762-773

[14] Ntouyas, S. K.; Palamides, P. K. On Sturm-Liouville and Thomas-Fermi Singular Boundary Value Problems, Nonlinear Oscillations, Volume 4 (2001), pp. 326-344

[15] A. Orpel On the existence of bounded positive solutions for a class of singular BVPs, Nonlinear Anal., Volume 69 (2008), pp. 1389-1395

[16] O’Regan, D. Singular differential equations with linear and nonlinear boundary conditions, Computers Math. Appl., Volume 35 (1998), pp. 81-97

[17] Shin, J. V. A singular nonlinear differential equation arising in the Homann flow, J. Math. Anal. Appl., Volume 212 (1997), pp. 443-451

[18] Soewono, E.; Vajravelu, K.; Mohapatra, R. N. Existence and nonuniqueness of solutions of a singular nonlinear boundary layer problem, J. Math. Anal. Appl., Volume 159 (1991), pp. 251-270

[19] Yang, G. C. Existence of solutions to the third-order nonlinear differential equations arising in boundary layer theory, Appl. Math. Lett., Volume 6 (2003), pp. 827-832

[20] Yang, G. C. Positive solutions of singular Dirichlet boundary value problems with signchanging nonlinearities, Comp. Math. Appl., Volume 51 (2006), pp. 1463-1470

[21] Z. Yong Positive solutions of singular sublinear Emden-Fower boundary value problems, J. Math. Anal. Appl., Volume 185 (1994), pp. 215-222

Cité par Sources :