Voir la notice de l'article provenant de la source International Scientific Research Publications
$−x''(t) = f(t, x(t), x'(t)),\quad t \in (0, 1)$ |
$x(0) = 0, x(1) = 0,$ |
KHAN, RAHMAT ALI 1 ; ASIF, NASEER AHMAD 1
@article{JNSA_2009_2_2_a6, author = {KHAN, RAHMAT ALI and ASIF, NASEER AHMAD}, title = {POSITIVE {SOLUTIONS} {FOR} {A} {CLASS} {OF} {SINGULAR} {TWO} {POINT} {BOUNDARY} {VALUE} {PROBLEMS}}, journal = {Journal of nonlinear sciences and its applications}, pages = {126-135}, publisher = {mathdoc}, volume = {2}, number = {2}, year = {2009}, doi = {10.22436/jnsa.002.02.07}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.002.02.07/} }
TY - JOUR AU - KHAN, RAHMAT ALI AU - ASIF, NASEER AHMAD TI - POSITIVE SOLUTIONS FOR A CLASS OF SINGULAR TWO POINT BOUNDARY VALUE PROBLEMS JO - Journal of nonlinear sciences and its applications PY - 2009 SP - 126 EP - 135 VL - 2 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.002.02.07/ DO - 10.22436/jnsa.002.02.07 LA - en ID - JNSA_2009_2_2_a6 ER -
%0 Journal Article %A KHAN, RAHMAT ALI %A ASIF, NASEER AHMAD %T POSITIVE SOLUTIONS FOR A CLASS OF SINGULAR TWO POINT BOUNDARY VALUE PROBLEMS %J Journal of nonlinear sciences and its applications %D 2009 %P 126-135 %V 2 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.002.02.07/ %R 10.22436/jnsa.002.02.07 %G en %F JNSA_2009_2_2_a6
KHAN, RAHMAT ALI; ASIF, NASEER AHMAD. POSITIVE SOLUTIONS FOR A CLASS OF SINGULAR TWO POINT BOUNDARY VALUE PROBLEMS. Journal of nonlinear sciences and its applications, Tome 2 (2009) no. 2, p. 126-135. doi : 10.22436/jnsa.002.02.07. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.002.02.07/
[1] On the positive and negative solutions of Laplacian BVP with Neumann boundary conditions, J. Nonlinear Sci. Appl., Volume 2 (2009), pp. 38-45
[2] Twin solutions to singular Dirichlet problems, J. Math. Anal. Appl., Volume 240 (1999), pp. 433-445
[3] An upper and lower solution approach for a generalized Thomas-Fermi theory of neutral atoms, Mathematical Problems in Engineering, Volume 8 (2002), pp. 135-142
[4] Singular differential and integral equations with applications, Kluwer Academic Publishers, London, 2003
[5] The generalized Thomas-Fermi singular boundary value problems for neutral atoms, Math. Methods in the Appl. Sci., Volume 29 (2006), pp. 49-66
[6] Heat content asymptotics with singular initial temperature distributions, J. Funct. Anal., Volume 254 (2008), pp. 3093-3122
[7] A nonlinear singular boundary value problem in the theory of pseudoplastic fluids, SIAM J. Appl. Math., Volume 38 (1980), pp. 275-282
[8] Non-collision periodic solutions of second order singular dynamical systems, J. Math. Anal. Appl., Volume 344 (2008), pp. 898-905
[9] Impulsive periodic solutions of first-order singular differential equations, Bull. London Math. Soc., Volume 40 (2008), pp. 143-150
[10] Existence and uniqueness of positive solutions to a class of singular m-point boundary value problems, Appl. Math. Comput., Volume 198 (2008), pp. 487-493
[11] Positive solutions for a class of m-point singular boundary value problems, Math. Comput. Modelling , Volume 46 (2007), pp. 375-383
[12] A generalized Emden-Fowler equation with a negative exponent, Nonlinear Anal., Volume 23 (1994), pp. 953-970
[13] Positive solutions of four point singular boundary value problems, Appl. Math. Comput., Volume 201 (2008), pp. 762-773
[14] On Sturm-Liouville and Thomas-Fermi Singular Boundary Value Problems, Nonlinear Oscillations, Volume 4 (2001), pp. 326-344
[15] On the existence of bounded positive solutions for a class of singular BVPs, Nonlinear Anal., Volume 69 (2008), pp. 1389-1395
[16] Singular differential equations with linear and nonlinear boundary conditions, Computers Math. Appl., Volume 35 (1998), pp. 81-97
[17] A singular nonlinear differential equation arising in the Homann flow, J. Math. Anal. Appl., Volume 212 (1997), pp. 443-451
[18] Existence and nonuniqueness of solutions of a singular nonlinear boundary layer problem, J. Math. Anal. Appl., Volume 159 (1991), pp. 251-270
[19] Existence of solutions to the third-order nonlinear differential equations arising in boundary layer theory, Appl. Math. Lett., Volume 6 (2003), pp. 827-832
[20] Positive solutions of singular Dirichlet boundary value problems with signchanging nonlinearities, Comp. Math. Appl., Volume 51 (2006), pp. 1463-1470
[21] Positive solutions of singular sublinear Emden-Fower boundary value problems, J. Math. Anal. Appl., Volume 185 (1994), pp. 215-222
Cité par Sources :