EXISTENCES AND BOUNDARY BEHAVIOR OF BOUNDARY BLOW-UP SOLUTIONS TO QUASILINEAR ELLIPTIC SYSTEMS WITH SINGULAR WEIGHTS
Journal of nonlinear sciences and its applications, Tome 2 (2009) no. 2, p. 97-104.

Voir la notice de l'article provenant de la source International Scientific Research Publications

Using the method of explosive sub and supper solution, the existence and boundary behavior of positive boundary blow up solutions for some quasilinear elliptic systems with singular weight function are obtained under more extensive conditions.
DOI : 10.22436/jnsa.002.02.04
Classification : 35J60, 35B25, 35B50
Keywords: Quasilinear elliptic systems, Boundary blow up, Explosive sub- and super-solution.

TIAN , QIAOYU  1 ; HUANG, SHUIBO 1

1 Department of Mathematics Hezuo Minorities Teacher College, Hezuo Gansu , 747000. P. R. China
@article{JNSA_2009_2_2_a3,
     author = {TIAN , QIAOYU  and HUANG, SHUIBO},
     title = {EXISTENCES {AND} {BOUNDARY} {BEHAVIOR} {OF} {BOUNDARY} {BLOW-UP} {SOLUTIONS} {TO} {QUASILINEAR} {ELLIPTIC} {SYSTEMS} {WITH} {SINGULAR} {WEIGHTS}},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {97-104},
     publisher = {mathdoc},
     volume = {2},
     number = {2},
     year = {2009},
     doi = {10.22436/jnsa.002.02.04},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.002.02.04/}
}
TY  - JOUR
AU  - TIAN , QIAOYU 
AU  - HUANG, SHUIBO
TI  - EXISTENCES AND BOUNDARY BEHAVIOR OF BOUNDARY BLOW-UP SOLUTIONS TO QUASILINEAR ELLIPTIC SYSTEMS WITH SINGULAR WEIGHTS
JO  - Journal of nonlinear sciences and its applications
PY  - 2009
SP  - 97
EP  - 104
VL  - 2
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.002.02.04/
DO  - 10.22436/jnsa.002.02.04
LA  - en
ID  - JNSA_2009_2_2_a3
ER  - 
%0 Journal Article
%A TIAN , QIAOYU 
%A HUANG, SHUIBO
%T EXISTENCES AND BOUNDARY BEHAVIOR OF BOUNDARY BLOW-UP SOLUTIONS TO QUASILINEAR ELLIPTIC SYSTEMS WITH SINGULAR WEIGHTS
%J Journal of nonlinear sciences and its applications
%D 2009
%P 97-104
%V 2
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.002.02.04/
%R 10.22436/jnsa.002.02.04
%G en
%F JNSA_2009_2_2_a3
TIAN , QIAOYU ; HUANG, SHUIBO. EXISTENCES AND BOUNDARY BEHAVIOR OF BOUNDARY BLOW-UP SOLUTIONS TO QUASILINEAR ELLIPTIC SYSTEMS WITH SINGULAR WEIGHTS. Journal of nonlinear sciences and its applications, Tome 2 (2009) no. 2, p. 97-104. doi : 10.22436/jnsa.002.02.04. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.002.02.04/

[1] Bieberbach, L. \(\Delta u = e^u\) und die automorphen Funktionen, Math. Ann. , Volume 77 (1916), pp. 173-212

[2] Bandle, C.; M. Marcus ”Large” solutions of semilinear elliptic equations: Existence, uniqueness and asymptot behaviour, J. Anal. Math., Volume 58 (1992), pp. 9-24

[3] Boni, T .; Nabongo, D.; Sery, R. Blow-up time of some nonlinear wave equations, J. Nonlinear Sci. Appl., Volume 2 (2008), pp. 91-101

[4] Chuaqui, M.; Corázar, C.; Elgueta, M.; García-Melián, J. Uniqueness and boundary behaviour of large solution elliptic problems with singular weights, Commun.Pure. Appl. Anal., Volume 3 (2004), pp. 653-662

[5] Cîrstea, F.; Du, Y. General uniqueness results and variation speed for blow-up solutions of elliptic equations, Proc. London Math. Soc, Volume 91 (2005), pp. 459-482

[6] Dancer, N.; Du, Y. Effects of certain degeneracies in the predator-prey model. , SIAM J. Math. Anal. (2002), pp. 292-314

[7] Du, Y. Effects of a degeneracy in the competition model. Part I: Classical and generalized steady-state solutions, J. Differential Equations. , Volume 181 (2002), pp. 92-132

[8] Du, Y. Effects of a degeneracy in the competition model. Part II: Perturbation and dynamical behaviour, J. Differential Equations., Volume 181 (2002), pp. 133-164

[9] Gómez, J. L. Optimal uniqueness theorems and exact blow-up rates of large solutions, J. Differential Equations., Volume 224 (2006), pp. 385-439

[10] Gómez, J. L. The boundary blow-up rate of large solutions, J. Differential Equations, Volume 195 (2003), pp. 25-45

[11] García-Melián, J. Large solutions for equations involvingt p-Laplacian and singular weights, Z. angew. Math. Phys., , 2009

[12] García-Melián, J. Uniqueness for boundary blow-up poblems with continuous weights, Proc. Amer. Math. Soc. , Volume 135 (2007), pp. 2785-2793

[13] García-Melián, J. A remark on the existence of positive large solutions via sub and supersolutions, Electron J. Differential Equations., Volume 110 (2003), pp. 1-4

[14] García-Melián, J.; Rossi, J. D. Boundary blow-up solutions to elliptic systems of competitive type, J. Differential Equations., Volume 206 (2004), pp. 156-181

[15] García-Melián, J. A remark on uniqueness of large solutions for elliptic systems of competitive type, J. Math. Anal. Appl., Volume 331 (2007), pp. 608-616

[16] García-Melián, J.; Letelier-Albornoz, R.; Lis, J. Sabina de The solvability of an elliptic system under a singular boundary condition, Proc. Roy. Soc. Edinburgh, Volume 136 (2006), pp. 509-546

[17] García-Melián, J.; Suárez, A. Existence and uniqueness of positive large solutions to some cooperative elliptic systems, Adv. Nonlinear Studies, Volume 3 (2003), pp. 193-206

[18] García-Melián, J. Large solutions for an elliptic system of quasilinear equations, J. Differential Equations. , Volume 245 (2008), pp. 3735-3752

[19] Huang, S.; Tian, Q.; Mu, C. Asymptotic behavior of large solution to elliptic equation of Bieberbach-Rademacher type with convection terms, Appl. Math. Comput. , Volume 210 (2009), pp. 284-293

[20] Huang, S.; Tian, Q.; C. Mu The prospers of boundary blow-up solutions to elliptic systems of competitive type with singular weights, Chinese J. Engrg Math. (in Chinese) (2009)

[21] Lazer, A. C.; McKenna, P. J. On a problem of Bieberbach and Rademacher, Nonlinear Anal., Volume 21 (1993), pp. 327-335

[22] Li, H.; Wang, M. Existence and uniqueness of positive solutions to the boundary blow-up problem for an elliptic system, J. Differential Equations. , Volume 234 (2007), pp. 246-266

[23] Liu, C.; Yang, D. Existence of large solutions for a quasilinear elliptic problem via explosive sub-supersolutions, Appl. Math. Comput, Volume 199 (2008), pp. 414-424

[24] Mu, C.; Huang, S.; Tian, Q.; Liu, L. Large solutions for an elliptic system of competitive type: Existence, uniqueness and asymptotic behavior, Nonlinear Anal., , 2009

[25] McKenna, P. L.; Reichel; W. Walter Symmetry and multiplicity for nonlinear elliptic differential equations with boundwry blow-up, Nonlinear Anal. (1997), pp. 1213-1225

[26] Rademacher, H. Einige besondere probleme partieller Differentialgleichungen, in Die Differential und Integralgleichungen der Mechanik und Physik, I,Rosenberg, New York, second ed. (1943), pp. 838-845

[27] S. I. Resnick Extreme Values, Regular Variation, and Point Processes, Springer Verlag, Berlin/New York, 1987

[28] Wei, L.; Wang, M. Existence and estimate of large solutions for an elliptic system, Nonlinear Anal., Volume 70 (2009), pp. 1096-1104

[29] Wang, M.; Wei, L. Existence and boundary blow-up rates of solutions for boundary blow-up elliptic systems, Nonlinear Anal. , , 2009

[30] Z. Wu; Yang, D. Existence of boundary blow-up solutions for a class of quasilinear elliptic systems with critical case, Appl Math Comput., Volume 198 (2008), pp. 574-581

[31] D.Yang; Wu, Z. Existence of boundary blow-up solutions for a class of quasilinear elliptic systems with subcritical case, Commun.Pure. Appl. Anal. , Volume 6 (2007), pp. 531-540

[32] Yang, D. Existence of entire explosive positive radial solutions for a class of quasilinear elliptic systems, J. Math. Anal. Appl. , Volume 288 (2003), pp. 768-783

[33] Zhang, Z. Existence of large solutions for a semilinear elliptic problem via explosive subsupersolutions, Electron J. Differential Equations. , Volume 2 (2006), pp. 1-8

[34] Zhang, F. Multiple positive solutions for nonlinear singular third-order boundary value problem in abstract space, J. Nonlinear Sci. Appl., Volume 1 (2008), pp. 36-44

Cité par Sources :