ON KANNAN FIXED POINT PRINCIPLE IN GENERALIZED METRIC SPACES
Journal of nonlinear sciences and its applications, Tome 2 (2009) no. 2, p. 92-96.

Voir la notice de l'article provenant de la source International Scientific Research Publications

The concept of a generalized metric space, where the triangle inequality has been replaced by a more general one involving four points, has been recently introduced by Branciari. Subsequently, some classical metric fixed point theorems have been transferred to such a space. The aim of this note is to show that Kannan's fixed point theorem in a generalized metric space is a consequence of the Banach contraction principle in a metric space.
DOI : 10.22436/jnsa.002.02.03
Classification : 47H10, 54H25
Keywords: Generalized metric space, T-orbitally complete, Fixed point.

Miheţ, Dorel 1

1 West University of Timişoara, Bv. V. Parvan 4, 300223, Timişoara, Romania.
@article{JNSA_2009_2_2_a2,
     author = {Mihe\c{t}, Dorel},
     title = {ON {KANNAN} {FIXED} {POINT} {PRINCIPLE} {IN} {GENERALIZED} {METRIC} {SPACES}},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {92-96},
     publisher = {mathdoc},
     volume = {2},
     number = {2},
     year = {2009},
     doi = {10.22436/jnsa.002.02.03},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.002.02.03/}
}
TY  - JOUR
AU  - Miheţ, Dorel
TI  - ON KANNAN FIXED POINT PRINCIPLE IN GENERALIZED METRIC SPACES
JO  - Journal of nonlinear sciences and its applications
PY  - 2009
SP  - 92
EP  - 96
VL  - 2
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.002.02.03/
DO  - 10.22436/jnsa.002.02.03
LA  - en
ID  - JNSA_2009_2_2_a2
ER  - 
%0 Journal Article
%A Miheţ, Dorel
%T ON KANNAN FIXED POINT PRINCIPLE IN GENERALIZED METRIC SPACES
%J Journal of nonlinear sciences and its applications
%D 2009
%P 92-96
%V 2
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.002.02.03/
%R 10.22436/jnsa.002.02.03
%G en
%F JNSA_2009_2_2_a2
Miheţ, Dorel. ON KANNAN FIXED POINT PRINCIPLE IN GENERALIZED METRIC SPACES. Journal of nonlinear sciences and its applications, Tome 2 (2009) no. 2, p. 92-96. doi : 10.22436/jnsa.002.02.03. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.002.02.03/

[1] Akram, M.; A. Siddiqui A fixed point theorem for A-contractions on a class of generalized metric spaces, Korean J. Math. Sciences, Volume 10 (2) (2003), pp. 1-5

[2] Azam, A.; M. Arshad Kannan fixed point theorem on generalized metric spaces, J. Nonlinear Sci. Appl. , Volume 1 (1) (2008), pp. 45-48

[3] Branciari, A. A fixed point theorem of Banach-Caccioppoli type on a class of generalized metric spaces, Publ. Math. Debrecen, Volume 57 (1-2) (2000), pp. 31-37

[4] Ćirić, Lb. A generalization of Banach's contraction principle, Proc. Amer. Math. Soc., Volume 45(2) (1974), pp. 267-273

[5] Das, P. A fixed point theorem on a class of generalized metric spaces, Korean J. Math. Sc., Volume 9 (1) (2002), pp. 29-33

[6] Das, P.; Dey, L. K. A fixed point theorem in a eneralized metric space, Soochow Journal of Mathematics , Volume 33 (1) (2007), pp. 33-39

[7] Lahiri, B. K.; Das, P. Fixed point of a Ljubomir Ćirić's quasi-contraction mapping in a generalized metric space, Publ. Math. Debrecen, Volume 61 (3-4) (2002), pp. 589-594

[8] Kannan, R. Some results on fixed points, Bull. Cal. Math. Soc., Volume 60 (1968), pp. 71-76

[9] Sarknel, D. N. Banach's fixed point theorem implies Kannan's, Bull. Cal. Math. Soc., Volume 91 (2) (1999), pp. 143-144

Cité par Sources :