Voir la notice de l'article provenant de la source International Scientific Research Publications
Miheţ, Dorel 1
@article{JNSA_2009_2_2_a2, author = {Mihe\c{t}, Dorel}, title = {ON {KANNAN} {FIXED} {POINT} {PRINCIPLE} {IN} {GENERALIZED} {METRIC} {SPACES}}, journal = {Journal of nonlinear sciences and its applications}, pages = {92-96}, publisher = {mathdoc}, volume = {2}, number = {2}, year = {2009}, doi = {10.22436/jnsa.002.02.03}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.002.02.03/} }
TY - JOUR AU - Miheţ, Dorel TI - ON KANNAN FIXED POINT PRINCIPLE IN GENERALIZED METRIC SPACES JO - Journal of nonlinear sciences and its applications PY - 2009 SP - 92 EP - 96 VL - 2 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.002.02.03/ DO - 10.22436/jnsa.002.02.03 LA - en ID - JNSA_2009_2_2_a2 ER -
%0 Journal Article %A Miheţ, Dorel %T ON KANNAN FIXED POINT PRINCIPLE IN GENERALIZED METRIC SPACES %J Journal of nonlinear sciences and its applications %D 2009 %P 92-96 %V 2 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.002.02.03/ %R 10.22436/jnsa.002.02.03 %G en %F JNSA_2009_2_2_a2
Miheţ, Dorel. ON KANNAN FIXED POINT PRINCIPLE IN GENERALIZED METRIC SPACES. Journal of nonlinear sciences and its applications, Tome 2 (2009) no. 2, p. 92-96. doi : 10.22436/jnsa.002.02.03. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.002.02.03/
[1] A fixed point theorem for A-contractions on a class of generalized metric spaces, Korean J. Math. Sciences, Volume 10 (2) (2003), pp. 1-5
[2] Kannan fixed point theorem on generalized metric spaces, J. Nonlinear Sci. Appl. , Volume 1 (1) (2008), pp. 45-48
[3] A fixed point theorem of Banach-Caccioppoli type on a class of generalized metric spaces, Publ. Math. Debrecen, Volume 57 (1-2) (2000), pp. 31-37
[4] A generalization of Banach's contraction principle, Proc. Amer. Math. Soc., Volume 45(2) (1974), pp. 267-273
[5] A fixed point theorem on a class of generalized metric spaces, Korean J. Math. Sc., Volume 9 (1) (2002), pp. 29-33
[6] A fixed point theorem in a eneralized metric space, Soochow Journal of Mathematics , Volume 33 (1) (2007), pp. 33-39
[7] Fixed point of a Ljubomir Ćirić's quasi-contraction mapping in a generalized metric space, Publ. Math. Debrecen, Volume 61 (3-4) (2002), pp. 589-594
[8] Some results on fixed points, Bull. Cal. Math. Soc., Volume 60 (1968), pp. 71-76
[9] Banach's fixed point theorem implies Kannan's, Bull. Cal. Math. Soc., Volume 91 (2) (1999), pp. 143-144
Cité par Sources :