STRONG CONVERGENCE THEOREMS FOR EQUILIBRIUM PROBLEMS AND FIXED POINT PROBLEMS OF STRICT PSEUDO-CONTRACTION MAPPINGS
Journal of nonlinear sciences and its applications, Tome 2 (2009) no. 2, p. 78-91.

Voir la notice de l'article provenant de la source International Scientific Research Publications

The purpose of this paper is to introduce an iterative scheme for finding a common element of the set of solutions of an equilibrium problem and the set of fixed points of a k−strict pseudo-contraction non-self mapping in Hilbert space. By the viscosity approximation algorithms, under suitable conditions , some strong convergence theorems for approximating to this common elements are proved. The results presented in the paper extend and improve some recent results of Marino and Xu [G.Marino,H.K.Xu, Weak and strong convergence theorems for k−strict pseudo-contractions in Hilbert spaces, J. Math. Anal. Appl. 329 (2007) 336–349], Zhou [H.Zhou, Convergence theorems of fixed Points for k−strict pseudo-contractions in Hilbert spaces, Nonlinear Anal. 69 (2008) 456–462], Takahashi and Takahashi [S. Takahashi, W. Takahashi, Viscosity approximation methods for equilibrium problems and fixed point problems in Hilbert spaces, J. Math. Anal. Appl. 331 (2007) 506– 515], Ceng,Homidan,etc [L. C. Ceng, S.A.Homidan, Q.H.Ansari, J. C. Yao, An iterative scheme for equilibrium problems and fixed point problems of strict pseudo-contraction mappings, J. Comput. Appl. Math. 223 (2009) 967–974].
DOI : 10.22436/jnsa.002.02.02
Classification : 47H05, 47H09, 47H10
Keywords: Equilibrium problem, strict pseudo-contraction mapping, fixed point, strong convergence theorem.

ZHAO , LIANG CAI  1 ; CHANG, SHIH-SEN 2

1 Department of Mathematics, Yibin University, Yibin, Sichuan 644000, China
2 Department of Mathematics, Sichuan University, Chengdu 610064, P. R. China
@article{JNSA_2009_2_2_a1,
     author = {ZHAO , LIANG CAI  and CHANG, SHIH-SEN},
     title = {STRONG {CONVERGENCE} {THEOREMS} {FOR} {EQUILIBRIUM} {PROBLEMS} {AND} {FIXED} {POINT} {PROBLEMS} {OF} {STRICT} {PSEUDO-CONTRACTION} {MAPPINGS}},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {78-91},
     publisher = {mathdoc},
     volume = {2},
     number = {2},
     year = {2009},
     doi = {10.22436/jnsa.002.02.02},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.002.02.02/}
}
TY  - JOUR
AU  - ZHAO , LIANG CAI 
AU  - CHANG, SHIH-SEN
TI  - STRONG CONVERGENCE THEOREMS FOR EQUILIBRIUM PROBLEMS AND FIXED POINT PROBLEMS OF STRICT PSEUDO-CONTRACTION MAPPINGS
JO  - Journal of nonlinear sciences and its applications
PY  - 2009
SP  - 78
EP  - 91
VL  - 2
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.002.02.02/
DO  - 10.22436/jnsa.002.02.02
LA  - en
ID  - JNSA_2009_2_2_a1
ER  - 
%0 Journal Article
%A ZHAO , LIANG CAI 
%A CHANG, SHIH-SEN
%T STRONG CONVERGENCE THEOREMS FOR EQUILIBRIUM PROBLEMS AND FIXED POINT PROBLEMS OF STRICT PSEUDO-CONTRACTION MAPPINGS
%J Journal of nonlinear sciences and its applications
%D 2009
%P 78-91
%V 2
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.002.02.02/
%R 10.22436/jnsa.002.02.02
%G en
%F JNSA_2009_2_2_a1
ZHAO , LIANG CAI ; CHANG, SHIH-SEN. STRONG CONVERGENCE THEOREMS FOR EQUILIBRIUM PROBLEMS AND FIXED POINT PROBLEMS OF STRICT PSEUDO-CONTRACTION MAPPINGS. Journal of nonlinear sciences and its applications, Tome 2 (2009) no. 2, p. 78-91. doi : 10.22436/jnsa.002.02.02. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.002.02.02/

[1] E. Blum; Oettli, W. From optimization and variational inequalities to equilibrium problems, Math. Student., Volume 63 (1994), pp. 123-145

[2] Browder, F. E. Fixed point theorems for noncompact mappings in Hilbert spaces, Proc. Natl. Acad. Sci. USA, Volume 53 (1965), pp. 1272-1276

[3] Browder, F. E.; Petryshyn, W. V. Construction of fixed points of nonlinear mappings in Hilbert spaces, J. Math. Anal. Appl. , Volume 20 (1967), pp. 197-228

[4] Ceng, L. C.; A.Homidan, S.; Ansari, Q. H.; Yao, J. C. An iterative scheme for equilibrium problems and fixed point problems of strict pseudo-contraction mappings, J. Comput. Appl. Math., Volume 223 (2009), pp. 967-974

[5] Chang, S. S. Some problems and results in the study of nonlinear analysis, Nonlinear Anal., Volume 30 (1997), pp. 4197-4208

[6] Combettes, P. L.; Hirstoaga, A. Equilibrium programming in Hilbert spaces, J. Nonlinear Convex Anal., Volume 6 (2005), pp. 117-136

[7] Flam, S. D.; Antipin, A. S. Equilibrium programming using proximal-like algorithms, Math. Program. , Volume 78 (1997), pp. 29-41

[8] Flores-Bazan, F. Existence theory for finite-dimensional pseudomonotone equilibrium problems, Acta. Appl. Math. , Volume 77 (2003), pp. 249-297

[9] Hadjisavvas, N.; Schaible, S. From scalar to vector equilibrium problems in the quasimonotone case, J. Optim. Theory Appl., Volume 96 (1998), pp. 297-309

[10] Iiduka, H.; W. Takahashi Strong convergence theorems for nonexpansive mappings and inverse-strongly monotone mappings, Nonlinear Anal., Volume 61 (2005), pp. 341-350

[11] Kim, T. H.; Xu, H. K. Strong convergence of modified Mann iteration, Nonlinear Anal., Volume 61 (2005), pp. 51-60

[12] Mann, W. R. Mean value methods in iterations, Proc. Amer. Math. Soc., Volume 4 (1953), pp. 506-510

[13] Marino, G.; Xu, H. K. Weak and strong convergence theorems for k−strict pseudocontractions in Hilbert spaces, J. Math. Anal. Appl., Volume 329 (2007), pp. 336-349

[14] Moudafi, A. Viscosity approximation methods for fixed points problems, J. Math. Anal. Appl. , Volume 241 (2000), pp. 46-55

[15] Nakajo, K.; W. Takahashi Strong convergence theorems for nonexpansive mappings and nonexpansive semigroups , J. Math. Anal. Appl., Volume 279 (2003), pp. 372-379

[16] Z. Opial Weak convergence of the sequence of successive approximations for nonexpansive mappings, Bull. Amer. Math. Soc., Volume 73 (1967), pp. 595-597

[17] Reich, S. Weak convergence theorems for nonexpansive mappings in Banach spaces, J. Math. Anal. Appl. , Volume 67 (1979), pp. 274-276

[18] Rhoades, B. E. Fixed point iterations using infinite matrices, Trans. Amer. Math. Soc. , Volume 196 (1974), pp. 162-176

[19] Suzuki, T. Strong convergence of Krasnoselskii and Mann’s type sequences for oneparameter nonexpansive semigroups without Bochner integrals, J. Math. Anal. Appl. , Volume 305 (2005), pp. 227-239

[20] Tada, A.; Takahashi, W. Strong convergence theorem for an equilibrium problem and a nonexpansive mapping, in: W. Takahashi, T. Tanaka(Eds.), Nonlinear Analysis and Convex Analysis, 609–617, Yokohama Publishers, Yokohama, 2006

[21] Takahashi, S.; W. Takahashi Viscosity approximation methods for equilibrium problems and fixed point problems in Hilbert spaces, J. Math. Anal. Appl., Volume 331 (2007), pp. 506-515

[22] Takahashi, W.; Toyoda, M. Weak convergence theorems for nonexpansive mappings and monotone mappings, J. Optim. Theory Appl., Volume 118 (2003), pp. 417-428

[23] Wittmann, R. Approximation of fixed points of nonexpansive mappings, Arch. Math., Volume 58 (1992), pp. 486-491

[24] H. K. Xu Iterative algorithms for nonlinear operators , J. London Math. Soc. , Volume 66 (2002), pp. 240-256

[25] H. Zhou Convergence theorems of fixed Points for k−strict pseudo-contractions in Hilbert spaces, Nonlinear Anal., Volume 69 (2008), pp. 456-462

Cité par Sources :