Voir la notice de l'article provenant de la source International Scientific Research Publications
ZHAO , LIANG CAI  1 ; CHANG, SHIH-SEN 2
@article{JNSA_2009_2_2_a1, author = {ZHAO , LIANG CAI and CHANG, SHIH-SEN}, title = {STRONG {CONVERGENCE} {THEOREMS} {FOR} {EQUILIBRIUM} {PROBLEMS} {AND} {FIXED} {POINT} {PROBLEMS} {OF} {STRICT} {PSEUDO-CONTRACTION} {MAPPINGS}}, journal = {Journal of nonlinear sciences and its applications}, pages = {78-91}, publisher = {mathdoc}, volume = {2}, number = {2}, year = {2009}, doi = {10.22436/jnsa.002.02.02}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.002.02.02/} }
TY - JOUR AU - ZHAO , LIANG CAI AU - CHANG, SHIH-SEN TI - STRONG CONVERGENCE THEOREMS FOR EQUILIBRIUM PROBLEMS AND FIXED POINT PROBLEMS OF STRICT PSEUDO-CONTRACTION MAPPINGS JO - Journal of nonlinear sciences and its applications PY - 2009 SP - 78 EP - 91 VL - 2 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.002.02.02/ DO - 10.22436/jnsa.002.02.02 LA - en ID - JNSA_2009_2_2_a1 ER -
%0 Journal Article %A ZHAO , LIANG CAI %A CHANG, SHIH-SEN %T STRONG CONVERGENCE THEOREMS FOR EQUILIBRIUM PROBLEMS AND FIXED POINT PROBLEMS OF STRICT PSEUDO-CONTRACTION MAPPINGS %J Journal of nonlinear sciences and its applications %D 2009 %P 78-91 %V 2 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.002.02.02/ %R 10.22436/jnsa.002.02.02 %G en %F JNSA_2009_2_2_a1
ZHAO , LIANG CAI ; CHANG, SHIH-SEN. STRONG CONVERGENCE THEOREMS FOR EQUILIBRIUM PROBLEMS AND FIXED POINT PROBLEMS OF STRICT PSEUDO-CONTRACTION MAPPINGS. Journal of nonlinear sciences and its applications, Tome 2 (2009) no. 2, p. 78-91. doi : 10.22436/jnsa.002.02.02. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.002.02.02/
[1] From optimization and variational inequalities to equilibrium problems, Math. Student., Volume 63 (1994), pp. 123-145
[2] Fixed point theorems for noncompact mappings in Hilbert spaces, Proc. Natl. Acad. Sci. USA, Volume 53 (1965), pp. 1272-1276
[3] Construction of fixed points of nonlinear mappings in Hilbert spaces, J. Math. Anal. Appl. , Volume 20 (1967), pp. 197-228
[4] An iterative scheme for equilibrium problems and fixed point problems of strict pseudo-contraction mappings, J. Comput. Appl. Math., Volume 223 (2009), pp. 967-974
[5] Some problems and results in the study of nonlinear analysis, Nonlinear Anal., Volume 30 (1997), pp. 4197-4208
[6] Equilibrium programming in Hilbert spaces, J. Nonlinear Convex Anal., Volume 6 (2005), pp. 117-136
[7] Equilibrium programming using proximal-like algorithms, Math. Program. , Volume 78 (1997), pp. 29-41
[8] Existence theory for finite-dimensional pseudomonotone equilibrium problems, Acta. Appl. Math. , Volume 77 (2003), pp. 249-297
[9] From scalar to vector equilibrium problems in the quasimonotone case, J. Optim. Theory Appl., Volume 96 (1998), pp. 297-309
[10] Strong convergence theorems for nonexpansive mappings and inverse-strongly monotone mappings, Nonlinear Anal., Volume 61 (2005), pp. 341-350
[11] Strong convergence of modified Mann iteration, Nonlinear Anal., Volume 61 (2005), pp. 51-60
[12] Mean value methods in iterations, Proc. Amer. Math. Soc., Volume 4 (1953), pp. 506-510
[13] Weak and strong convergence theorems for k−strict pseudocontractions in Hilbert spaces, J. Math. Anal. Appl., Volume 329 (2007), pp. 336-349
[14] Viscosity approximation methods for fixed points problems, J. Math. Anal. Appl. , Volume 241 (2000), pp. 46-55
[15] Strong convergence theorems for nonexpansive mappings and nonexpansive semigroups , J. Math. Anal. Appl., Volume 279 (2003), pp. 372-379
[16] Weak convergence of the sequence of successive approximations for nonexpansive mappings, Bull. Amer. Math. Soc., Volume 73 (1967), pp. 595-597
[17] Weak convergence theorems for nonexpansive mappings in Banach spaces, J. Math. Anal. Appl. , Volume 67 (1979), pp. 274-276
[18] Fixed point iterations using infinite matrices, Trans. Amer. Math. Soc. , Volume 196 (1974), pp. 162-176
[19] Strong convergence of Krasnoselskii and Mann’s type sequences for oneparameter nonexpansive semigroups without Bochner integrals, J. Math. Anal. Appl. , Volume 305 (2005), pp. 227-239
[20] Strong convergence theorem for an equilibrium problem and a nonexpansive mapping, in: W. Takahashi, T. Tanaka(Eds.), Nonlinear Analysis and Convex Analysis, 609–617, Yokohama Publishers, Yokohama, 2006
[21] Viscosity approximation methods for equilibrium problems and fixed point problems in Hilbert spaces, J. Math. Anal. Appl., Volume 331 (2007), pp. 506-515
[22] Weak convergence theorems for nonexpansive mappings and monotone mappings, J. Optim. Theory Appl., Volume 118 (2003), pp. 417-428
[23] Approximation of fixed points of nonexpansive mappings, Arch. Math., Volume 58 (1992), pp. 486-491
[24] Iterative algorithms for nonlinear operators , J. London Math. Soc. , Volume 66 (2002), pp. 240-256
[25] Convergence theorems of fixed Points for k−strict pseudo-contractions in Hilbert spaces, Nonlinear Anal., Volume 69 (2008), pp. 456-462
Cité par Sources :