SOME PROPERTIES OF B-CONVEXITY
Journal of nonlinear sciences and its applications, Tome 2 (2009) no. 2, p. 71-77.

Voir la notice de l'article provenant de la source International Scientific Research Publications

In this paper, we give a characteristic of B-convexity structures of finite dimensional B-spaces: if a finite dimensional B-space has the weak selection property then its B-convexity structure satisfies H-condition. We also get some relationships among B-convexity structures, selection property and fixed point property. We show that in a compact convex subset of a finite dimensional B-space satisfying H-condition the weak selection property implies the fixed point property.
DOI : 10.22436/jnsa.002.02.01
Classification : 46A55, 47H10, 54H25
Keywords: B-Convexity, continuous selection, fixed point, KKM-maping.

SUO, HONGMIN 1

1 School of Mathematics and Computer Science, GuiZhou University for Nationalities , 550025, Guiyang, Guizhou, China.
@article{JNSA_2009_2_2_a0,
     author = {SUO, HONGMIN},
     title = {SOME {PROPERTIES} {OF} {B-CONVEXITY}},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {71-77},
     publisher = {mathdoc},
     volume = {2},
     number = {2},
     year = {2009},
     doi = {10.22436/jnsa.002.02.01},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.002.02.01/}
}
TY  - JOUR
AU  - SUO, HONGMIN
TI  - SOME PROPERTIES OF B-CONVEXITY
JO  - Journal of nonlinear sciences and its applications
PY  - 2009
SP  - 71
EP  - 77
VL  - 2
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.002.02.01/
DO  - 10.22436/jnsa.002.02.01
LA  - en
ID  - JNSA_2009_2_2_a0
ER  - 
%0 Journal Article
%A SUO, HONGMIN
%T SOME PROPERTIES OF B-CONVEXITY
%J Journal of nonlinear sciences and its applications
%D 2009
%P 71-77
%V 2
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.002.02.01/
%R 10.22436/jnsa.002.02.01
%G en
%F JNSA_2009_2_2_a0
SUO, HONGMIN. SOME PROPERTIES OF B-CONVEXITY. Journal of nonlinear sciences and its applications, Tome 2 (2009) no. 2, p. 71-77. doi : 10.22436/jnsa.002.02.01. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.002.02.01/

[1] Briec, W.; C. D. Horvath B-convexity, Optimization, Volume 53 (2004), pp. 103-127

[2] Briec, W.; Horvath, C. D. Nash points, Ky Fan inequality and equilibria of abstract economies in Max-Plus and B-convexity, J. Math. Anal. Appl., Volume 341 (2008), pp. 188-199

[3] Vel, M. van de Theory of Convex Structures, North-Holland Mathematical Library. Vol.50, North-Holland Publishing Co., Amsterdam, 1993

[4] Horvath, C. D. Contractibility and general convexity, J. Math. Anal. Appl, Volume 156 (1991), pp. 341-357

[5] Park, S. Fixed point theorems in locally G-convex spaces, Nonlinear Anal., Volume 48 (2002), pp. 868-879

[6] Ding, X. P.; Kim, W. A.; Tan, K. K. A New minimax inequality on G-spaces with applications, Bull. Austra. Math. Soc., Volume 41 (1990), pp. 457-473

[7] Horvath, C. Some results on multivalued mappings and inequalities without convexity, in nonlinear and convex analysis,(Ed.B.L.Lin and S.Simons ), Lecture Notes in Pure and Applied Math,Marcel Dekker (1987), pp. 99-106

[8] Chang, S.-S.; Yuan, G. X.-Z.; Lee, G.-M.; Zhang, Xiao-Lan Saddle points and minimax theorems for vector-valued multifunctions on H-spaces, Appl. Math. Lett. , Volume 11 (1998), pp. 101-107

Cité par Sources :