CARTESIAN PRODUCTS OF PQPM-SPACES
Journal of nonlinear sciences and its applications, Tome 2 (2009) no. 1, p. 60-70.

Voir la notice de l'article provenant de la source International Scientific Research Publications

In this paper we define the concept of finite and countable Cartesian products of PqpM-spaces and give a number of its properties. We also study the properties of topologies of those products.
DOI : 10.22436/jnsa.002.01.08
Classification : 47H05, 47H10
Keywords: robabilistic-quasi-metric space, topology, Cartesian products of PqpM-space, countable Cartesian products of PqpM-spaces of type \(\{k_n\}\).

CHO, Y. J. 1 ; GRABIEC , M. T.  2 ; TALESHIAN, A. A. 3

1 Department of Mathematics, Gyeongsang National University, Chinju 660- 701, Korea
2 Department of Operation Research, Academy of Economics, al. Niepodleg losci 10, 60-967 Poznań, Poland
3 Department of Mathematics, Faculty of Basic Sciences, University of Mazandaran, Babolsar 47416 − 1468, Iran.
@article{JNSA_2009_2_1_a7,
     author = {CHO, Y. J. and GRABIEC , M. T.  and TALESHIAN,  A. A.},
     title = {CARTESIAN {PRODUCTS} {OF} {PQPM-SPACES}},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {60-70},
     publisher = {mathdoc},
     volume = {2},
     number = {1},
     year = {2009},
     doi = {10.22436/jnsa.002.01.08},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.002.01.08/}
}
TY  - JOUR
AU  - CHO, Y. J.
AU  - GRABIEC , M. T. 
AU  - TALESHIAN,  A. A.
TI  - CARTESIAN PRODUCTS OF PQPM-SPACES
JO  - Journal of nonlinear sciences and its applications
PY  - 2009
SP  - 60
EP  - 70
VL  - 2
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.002.01.08/
DO  - 10.22436/jnsa.002.01.08
LA  - en
ID  - JNSA_2009_2_1_a7
ER  - 
%0 Journal Article
%A CHO, Y. J.
%A GRABIEC , M. T. 
%A TALESHIAN,  A. A.
%T CARTESIAN PRODUCTS OF PQPM-SPACES
%J Journal of nonlinear sciences and its applications
%D 2009
%P 60-70
%V 2
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.002.01.08/
%R 10.22436/jnsa.002.01.08
%G en
%F JNSA_2009_2_1_a7
CHO, Y. J.; GRABIEC , M. T. ; TALESHIAN,  A. A. CARTESIAN PRODUCTS OF PQPM-SPACES. Journal of nonlinear sciences and its applications, Tome 2 (2009) no. 1, p. 60-70. doi : 10.22436/jnsa.002.01.08. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.002.01.08/

[1] Egbert, R.J. Products and quotients of PMS, Pacific J. Math., Volume 241 (1968), pp. 437-455

[2] Grabiec, M. Probabilistic quasi-pseudo-metric-spaces, Busefal, Volume 45 (1991), pp. 137-145

[3] Höhle, U. Probabilistiche Metriken auf der Menge der nichtnegativen Verteilungsfunctionen, Aequtiones Math., Volume 18 (1978), pp. 345-356 | DOI

[4] Vădura, V.I. Istrăţescu and I. Products of statistical metric spaces, Stud. Cerc. Math., Volume 12 (1961), pp. 567-574

[5] Menger, K. Statistical spaces, Proc. Acad. Sci. USA, Volume 28 (1942), pp. 535-537

[6] Radu, V. On probabilistic structures on product spaces, Proc. 5th Conf. Probability Theory, Braşov. (1974), pp. 277-282

[7] Schweizer, B.; Thorp, A. Sklar and E.; The metrization of statistical metric spaces, Pacific J. Math., Volume 10 (1960), pp. 673-675 | Zbl

[8] Sklar, B. Schweizer and A. Probabilistic Metric Spaces, North Holland, , 1983

[9] Taylor, H. Sherwood and M.D. Some PM structures on the set of distribution function, Rev. Roumaine Math. Pures Appl., Volume 19 (1974), pp. 1251-1260

[10] Sibley, D.A. A metric for a weak convergence of distribution functions, Rocky Moutain J. Math., Volume 1 (1971), pp. 427-430 | DOI

[11] Tardiff, R.M. Topologies for probabilistic metric spaces, Pacific J. Math., Volume 659 (1976), pp. 233-251

[12] Urazov, V.K. On products of probabilistic metric spaces, Vestnik Kazan. Univ. Mat., Volume 4 (1968), pp. 15-18

[13] Wald, A. On a statistical generalization of metric spaces, Proc. Nat. Acad. USA, Volume 29 (1943), pp. 196-197

[14] Xavier, A.F.S. On the product of probabilistic metric spaces, Portugal. Math., Volume 27 (1968), pp. 137-147

[15] Shakeri, S. A contraction thorem in Menger probabilistic metric spaces, J. Nonlinear Sci. Appl., Volume 1 (2008), pp. 189-193

Cité par Sources :