ON THE DEFINITION OF FUZZY HILBERT SPACES AND ITS APPLICATION
Journal of nonlinear sciences and its applications, Tome 2 (2009) no. 1, p. 46-59.

Voir la notice de l'article provenant de la source International Scientific Research Publications

In this paper we introduce the notion of fuzzy Hilbert spaces and deduce the fuzzy version of Riesz representation theorem. Also we prove some results in fixed point theory and utilize the results to study the existence and uniqueness of solution of Uryson's integral equation.
DOI : 10.22436/jnsa.002.01.07
Classification : 46A55, 46B99
Keywords: Fixed point theorem, fuzzy Hilbert space, fuzzy inner product space, Riesz representation theorem, Uryson's integral equation.

GOUDARZI , M.  1 ; VAEZPOUR, S. M. 1

1 Dept. of Math., Amirkabir University of Technology, Hafez Ave., P. O. Box 15914, Tehran, Iran
@article{JNSA_2009_2_1_a6,
     author = {GOUDARZI , M.  and VAEZPOUR, S. M.},
     title = {ON {THE} {DEFINITION} {OF} {FUZZY} {HILBERT} {SPACES} {AND} {ITS} {APPLICATION}},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {46-59},
     publisher = {mathdoc},
     volume = {2},
     number = {1},
     year = {2009},
     doi = {10.22436/jnsa.002.01.07},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.002.01.07/}
}
TY  - JOUR
AU  - GOUDARZI , M. 
AU  - VAEZPOUR, S. M.
TI  - ON THE DEFINITION OF FUZZY HILBERT SPACES AND ITS APPLICATION
JO  - Journal of nonlinear sciences and its applications
PY  - 2009
SP  - 46
EP  - 59
VL  - 2
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.002.01.07/
DO  - 10.22436/jnsa.002.01.07
LA  - en
ID  - JNSA_2009_2_1_a6
ER  - 
%0 Journal Article
%A GOUDARZI , M. 
%A VAEZPOUR, S. M.
%T ON THE DEFINITION OF FUZZY HILBERT SPACES AND ITS APPLICATION
%J Journal of nonlinear sciences and its applications
%D 2009
%P 46-59
%V 2
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.002.01.07/
%R 10.22436/jnsa.002.01.07
%G en
%F JNSA_2009_2_1_a6
GOUDARZI , M. ; VAEZPOUR, S. M. ON THE DEFINITION OF FUZZY HILBERT SPACES AND ITS APPLICATION. Journal of nonlinear sciences and its applications, Tome 2 (2009) no. 1, p. 46-59. doi : 10.22436/jnsa.002.01.07. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.002.01.07/

[1] Adibi, H.; Cho, Y. J.; O'Regan, D.; Saadati, R. Common fixed point theorems in \(L\)-fuzzy metric spaces, Applied Mathematics and Computation, Volume 182 (2006), pp. 820-828

[2] Alaca, C.; Turkoglu, D.; Yildiz, C. Fixed points in intuitionistic fuzzy meric spaces, Chaos, Solitons and Fractals, Volume 29 (2006), pp. 1073-1076

[3] Alsina, C.; Schweizer, B.; Sempi, C.; Sklar, A. On the definition of a probabilistic inner product space, Rendiconti di Matematica, Serie VII, Volume 17 (1997), pp. 115-127

[4] Bag, T.; Samanta, S. K. Finite dimensional fuzzy normed linear spaces, J. Fuzzy. Math., Volume 11 (2003), pp. 687-705

[5] El-Abyad, A. M.; H. M. El-Hamouly Fuzzy inner product spaces, Fuzzy Sets and Systems, Volume 44 (1991), pp. 309-326

[6] El-Naschie, M. On the uncertainity of Cantorian geometry and two-slit experiment, Chaos, Solitons and Fractals, Volume 9 (1998), pp. 517-529

[7] M. El-Naschie On the unification of heterotic strings, M theory and ²1 theory, Chaos, Solitons and Fractals, Volume 11 (2000), pp. 2397-2408

[8] Erich, K.; Radko, P. M.; Endre, P. Triangular norms, Dordrecht : Kluwer. (ISBN 0-7923- 6416-3.)

[9] George, A.; Veermani, P. On some results in fuzzy metric spaces, Fuzzy sets and systems, Volume 64 (1994), pp. 395-399

[10] Goudarzi, M.; Vaezpour, S. M.; R. Saadati On the intuitionistic fuzzy inner product spaces, Chaos, Solitons and Fractals, doi :10. 1016/j. Chaos. 2008. 04. 040., 2008

[11] Hosseini, S. B.; O;regan, D.; R. Saadati Some results on intuitionistic fuzzy spaces, Iranian Journal of Fuzzy Systems, Volume 4 (2007), pp. 53-64

[12] Kohli, J. K.; Kumar, R. On fuzzy inner product spaces and fuzzy co-inner product spaces, Fuzzy Sets and Systems, Volume 53 (1993), pp. 227-232

[13] Kohli, J. K.; Kumar, R. Linear mappings, fuzzy linear spaces, fuzzy inner product spaces and fuzzy co-inner product spaces, Bull Calcutta Math. Soc., Volume 87 (1995), pp. 237-246

[14] Krasnoselskii, M. A. Topological methods in the theory of nonlinear integral equations, Pergamon press. Oxford. Londan. New York, Paris, 1964

[15] Rodríguez-lópez, J.; Romaquera, S. The Hausdorrf fuzzy metric on compact sets, Fuzzy Sets and Systems, Volume 147 (2004), pp. 273-283

[16] Saadati, R.; Vaezpour, S. M. Some results on fuzzy Banach spaces, J. Appl. Math. and computing, Volume 17 (2005), pp. 475-484

[17] R. Saadati A note on some results on the IF-normed spaces, Chaos, Solitons and Fractals, doi :10. 1016/j. Chaos. 2007. 11. 027. 1 1 , 2007

[18] Schweizer, B.; A. Sklar Probabilistic metric spaces, North Holand series in probability and applied mathematics, , 1983

[19] Su, Y.; Wang, X.; Gao, J. Riesz theorem in probabilistic inner product spaces, Int. Math. Forum., Volume 62 (2007), pp. 3073-3078

Cité par Sources :