Voir la notice de l'article provenant de la source International Scientific Research Publications
GOUDARZI , M.  1 ; VAEZPOUR, S. M. 1
@article{JNSA_2009_2_1_a6, author = {GOUDARZI , M. and VAEZPOUR, S. M.}, title = {ON {THE} {DEFINITION} {OF} {FUZZY} {HILBERT} {SPACES} {AND} {ITS} {APPLICATION}}, journal = {Journal of nonlinear sciences and its applications}, pages = {46-59}, publisher = {mathdoc}, volume = {2}, number = {1}, year = {2009}, doi = {10.22436/jnsa.002.01.07}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.002.01.07/} }
TY - JOUR AU - GOUDARZI , M. AU - VAEZPOUR, S. M. TI - ON THE DEFINITION OF FUZZY HILBERT SPACES AND ITS APPLICATION JO - Journal of nonlinear sciences and its applications PY - 2009 SP - 46 EP - 59 VL - 2 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.002.01.07/ DO - 10.22436/jnsa.002.01.07 LA - en ID - JNSA_2009_2_1_a6 ER -
%0 Journal Article %A GOUDARZI , M. %A VAEZPOUR, S. M. %T ON THE DEFINITION OF FUZZY HILBERT SPACES AND ITS APPLICATION %J Journal of nonlinear sciences and its applications %D 2009 %P 46-59 %V 2 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.002.01.07/ %R 10.22436/jnsa.002.01.07 %G en %F JNSA_2009_2_1_a6
GOUDARZI , M. ; VAEZPOUR, S. M. ON THE DEFINITION OF FUZZY HILBERT SPACES AND ITS APPLICATION. Journal of nonlinear sciences and its applications, Tome 2 (2009) no. 1, p. 46-59. doi : 10.22436/jnsa.002.01.07. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.002.01.07/
[1] Common fixed point theorems in \(L\)-fuzzy metric spaces, Applied Mathematics and Computation, Volume 182 (2006), pp. 820-828
[2] Fixed points in intuitionistic fuzzy meric spaces, Chaos, Solitons and Fractals, Volume 29 (2006), pp. 1073-1076
[3] On the definition of a probabilistic inner product space, Rendiconti di Matematica, Serie VII, Volume 17 (1997), pp. 115-127
[4] Finite dimensional fuzzy normed linear spaces, J. Fuzzy. Math., Volume 11 (2003), pp. 687-705
[5] Fuzzy inner product spaces, Fuzzy Sets and Systems, Volume 44 (1991), pp. 309-326
[6] On the uncertainity of Cantorian geometry and two-slit experiment, Chaos, Solitons and Fractals, Volume 9 (1998), pp. 517-529
[7] On the unification of heterotic strings, M theory and ²1 theory, Chaos, Solitons and Fractals, Volume 11 (2000), pp. 2397-2408
[8] Triangular norms, Dordrecht : Kluwer. (ISBN 0-7923- 6416-3.)
[9] On some results in fuzzy metric spaces, Fuzzy sets and systems, Volume 64 (1994), pp. 395-399
[10] On the intuitionistic fuzzy inner product spaces, Chaos, Solitons and Fractals, doi :10. 1016/j. Chaos. 2008. 04. 040., 2008
[11] Some results on intuitionistic fuzzy spaces, Iranian Journal of Fuzzy Systems, Volume 4 (2007), pp. 53-64
[12] On fuzzy inner product spaces and fuzzy co-inner product spaces, Fuzzy Sets and Systems, Volume 53 (1993), pp. 227-232
[13] Linear mappings, fuzzy linear spaces, fuzzy inner product spaces and fuzzy co-inner product spaces, Bull Calcutta Math. Soc., Volume 87 (1995), pp. 237-246
[14] Topological methods in the theory of nonlinear integral equations, Pergamon press. Oxford. Londan. New York, Paris, 1964
[15] The Hausdorrf fuzzy metric on compact sets, Fuzzy Sets and Systems, Volume 147 (2004), pp. 273-283
[16] Some results on fuzzy Banach spaces, J. Appl. Math. and computing, Volume 17 (2005), pp. 475-484
[17] A note on some results on the IF-normed spaces, Chaos, Solitons and Fractals, doi :10. 1016/j. Chaos. 2007. 11. 027. 1 1 , 2007
[18] Probabilistic metric spaces, North Holand series in probability and applied mathematics, , 1983
[19] Riesz theorem in probabilistic inner product spaces, Int. Math. Forum., Volume 62 (2007), pp. 3073-3078
Cité par Sources :