Voir la notice de l'article provenant de la source International Scientific Research Publications
$ \begin{cases} -u''(x) = u^3(x) - \lambda|u(x)|,\quad x \in (0, 1),\\ u'(0) = 0 = u'(1), \end{cases} $ |
AFROUZI, G. A. 1 ; MOGHADDAM, M. KHALEGHY 2 ; MOHAMMADPOUR , J.  3 ; ZAMENI, M. 3
@article{JNSA_2009_2_1_a5, author = {AFROUZI, G. A. and MOGHADDAM, M. KHALEGHY and MOHAMMADPOUR , J. and ZAMENI, M.}, title = {ON {THE} {POSITIVE} {AND} {NEGATIVE} {SOLUTIONS} {OF} {LAPLACIAN} {BVP} {WITH} {NEUMANN} {BOUNDARY} {CONDITIONS}}, journal = {Journal of nonlinear sciences and its applications}, pages = {38-45}, publisher = {mathdoc}, volume = {2}, number = {1}, year = {2009}, doi = {10.22436/jnsa.002.01.06}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.002.01.06/} }
TY - JOUR AU - AFROUZI, G. A. AU - MOGHADDAM, M. KHALEGHY AU - MOHAMMADPOUR , J. AU - ZAMENI, M. TI - ON THE POSITIVE AND NEGATIVE SOLUTIONS OF LAPLACIAN BVP WITH NEUMANN BOUNDARY CONDITIONS JO - Journal of nonlinear sciences and its applications PY - 2009 SP - 38 EP - 45 VL - 2 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.002.01.06/ DO - 10.22436/jnsa.002.01.06 LA - en ID - JNSA_2009_2_1_a5 ER -
%0 Journal Article %A AFROUZI, G. A. %A MOGHADDAM, M. KHALEGHY %A MOHAMMADPOUR , J. %A ZAMENI, M. %T ON THE POSITIVE AND NEGATIVE SOLUTIONS OF LAPLACIAN BVP WITH NEUMANN BOUNDARY CONDITIONS %J Journal of nonlinear sciences and its applications %D 2009 %P 38-45 %V 2 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.002.01.06/ %R 10.22436/jnsa.002.01.06 %G en %F JNSA_2009_2_1_a5
AFROUZI, G. A.; MOGHADDAM, M. KHALEGHY; MOHAMMADPOUR , J. ; ZAMENI, M. ON THE POSITIVE AND NEGATIVE SOLUTIONS OF LAPLACIAN BVP WITH NEUMANN BOUNDARY CONDITIONS. Journal of nonlinear sciences and its applications, Tome 2 (2009) no. 1, p. 38-45. doi : 10.22436/jnsa.002.01.06. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.002.01.06/
[1] On the number of solutions for boundary-value problems with jumping nonlinearities, Ph.D. Thesis, Universit´e des Sciences et de la Technologie Houari Boumedienne, Algiers, Algeria, 2000
[2] Existence and multiplicity results for a class of p-Laplacian problems with Neumann-Robin boundary conditions, Chaos, Solitons & Fractals, Volume 30 (2006), pp. 967-973
[3] Nonnegative solution Curves of Semipositone Problems With Dirichlet Boundary conditions, Nonlinear Analysis, Theory, methods, and Applications, Volume 61 (2005), pp. 485-489
[4] Une revue et quelques compléments sur la détermination du nombre des solutions de certains problémes elliptiques semi–linéaires, Thése Doctorat 3é Cycle, Université Pierre et Marie Curie,I, Paris V, 1983
[5] Positive solutions for a class of nonlinear boundary value problems with Neumann–Robin boundary conditions, J. Math. Anal. Appl. , Volume 236 (1999), pp. 94-124
[6] Nonnegative solutions for a class non-positone problems, Proc. Roy. Soc. Edinburgh, Sect. A , Volume 108 (1988), pp. 291-302
[7] Bifurcation phenomena associated to the p-Laplacian operator, Trans. Amer. Math. Soc. , Volume 310 (1988), pp. 419-431
[8] Positive solutions for a class of singular two point boundary value problems, J. Nonlinear Sci. Appl., Volume 2 (2009), pp. 126-135
[9] Multiple positive solutions for a class of semipositone Neumann two point boundary value problems, J. Math. Anal. Appl. , Volume 178 (1993), pp. 102-115
Cité par Sources :