ON THE POSITIVE AND NEGATIVE SOLUTIONS OF LAPLACIAN BVP WITH NEUMANN BOUNDARY CONDITIONS
Journal of nonlinear sciences and its applications, Tome 2 (2009) no. 1, p. 38-45.

Voir la notice de l'article provenant de la source International Scientific Research Publications

In this paper, we consider the following Neumann boundary value problem
$ \begin{cases} -u''(x) = u^3(x) - \lambda|u(x)|,\quad x \in (0, 1),\\ u'(0) = 0 = u'(1), \end{cases} $
where $\lambda\in \mathbb{R}$ is parameter. We study the positive and negative solutions of this problem with respect to a parameter $\rho $ (i.e. $u(0) = \rho$) in all $\mathbb{R}^*$. By using a quadrature method, we obtain our results. Also we provide some details about the solutions that are obtained.
DOI : 10.22436/jnsa.002.01.06
Classification : 34B15, 34B18
Keywords: Positive and negative solutions, Interior critical points, Quadrature method, Neumann boundary condition, Laplacian problem.

AFROUZI, G. A. 1 ; MOGHADDAM, M. KHALEGHY 2 ; MOHAMMADPOUR , J.  3 ; ZAMENI, M. 3

1 Department of Mathematics, Faculty of Basic Sciences, Mazandaran University, Babolsar, Iran
2 Department of Basic Sciences, Faculty of Agriculture Engineering, Sari Agricultural Sciences and Natural Resources University, Sari, Iran.
3 Department of Mathematics, Islamic Azad Univercitiy Ghaemshahr Branch, P.O. Box163, Ghaemshahr, Iran.
@article{JNSA_2009_2_1_a5,
     author = {AFROUZI, G. A. and MOGHADDAM, M. KHALEGHY and MOHAMMADPOUR , J.  and ZAMENI, M.},
     title = {ON {THE} {POSITIVE} {AND} {NEGATIVE} {SOLUTIONS} {OF} {LAPLACIAN} {BVP} {WITH} {NEUMANN} {BOUNDARY} {CONDITIONS}},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {38-45},
     publisher = {mathdoc},
     volume = {2},
     number = {1},
     year = {2009},
     doi = {10.22436/jnsa.002.01.06},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.002.01.06/}
}
TY  - JOUR
AU  - AFROUZI, G. A.
AU  - MOGHADDAM, M. KHALEGHY
AU  - MOHAMMADPOUR , J. 
AU  - ZAMENI, M.
TI  - ON THE POSITIVE AND NEGATIVE SOLUTIONS OF LAPLACIAN BVP WITH NEUMANN BOUNDARY CONDITIONS
JO  - Journal of nonlinear sciences and its applications
PY  - 2009
SP  - 38
EP  - 45
VL  - 2
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.002.01.06/
DO  - 10.22436/jnsa.002.01.06
LA  - en
ID  - JNSA_2009_2_1_a5
ER  - 
%0 Journal Article
%A AFROUZI, G. A.
%A MOGHADDAM, M. KHALEGHY
%A MOHAMMADPOUR , J. 
%A ZAMENI, M.
%T ON THE POSITIVE AND NEGATIVE SOLUTIONS OF LAPLACIAN BVP WITH NEUMANN BOUNDARY CONDITIONS
%J Journal of nonlinear sciences and its applications
%D 2009
%P 38-45
%V 2
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.002.01.06/
%R 10.22436/jnsa.002.01.06
%G en
%F JNSA_2009_2_1_a5
AFROUZI, G. A.; MOGHADDAM, M. KHALEGHY; MOHAMMADPOUR , J. ; ZAMENI, M. ON THE POSITIVE AND NEGATIVE SOLUTIONS OF LAPLACIAN BVP WITH NEUMANN BOUNDARY CONDITIONS. Journal of nonlinear sciences and its applications, Tome 2 (2009) no. 1, p. 38-45. doi : 10.22436/jnsa.002.01.06. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.002.01.06/

[1] Addou, I. On the number of solutions for boundary-value problems with jumping nonlinearities, Ph.D. Thesis, Universit´e des Sciences et de la Technologie Houari Boumedienne, Algiers, Algeria, 2000

[2] Afruzi, G. A.; Moghadaam, M. Khaleghy Existence and multiplicity results for a class of p-Laplacian problems with Neumann-Robin boundary conditions, Chaos, Solitons & Fractals, Volume 30 (2006), pp. 967-973

[3] Afrouzi, G. A.; Moghaddam, M. Khalehghy Nonnegative solution Curves of Semipositone Problems With Dirichlet Boundary conditions, Nonlinear Analysis, Theory, methods, and Applications, Volume 61 (2005), pp. 485-489

[4] Ammar–Khodja, F. Une revue et quelques compléments sur la détermination du nombre des solutions de certains problémes elliptiques semi–linéaires, Thése Doctorat 3é Cycle, Université Pierre et Marie Curie,I, Paris V, 1983

[5] Anuradha, V.; Maya, C.; Shivaji, R. Positive solutions for a class of nonlinear boundary value problems with Neumann–Robin boundary conditions, J. Math. Anal. Appl. , Volume 236 (1999), pp. 94-124

[6] Castro, A.; Shivaji, R. Nonnegative solutions for a class non-positone problems, Proc. Roy. Soc. Edinburgh, Sect. A , Volume 108 (1988), pp. 291-302

[7] Guedda, M.; L. Veron Bifurcation phenomena associated to the p-Laplacian operator, Trans. Amer. Math. Soc. , Volume 310 (1988), pp. 419-431

[8] Khan, R. A.; Asif, N. A. Positive solutions for a class of singular two point boundary value problems, J. Nonlinear Sci. Appl., Volume 2 (2009), pp. 126-135

[9] Miciano, A. R.; Shivaji, R. Multiple positive solutions for a class of semipositone Neumann two point boundary value problems, J. Math. Anal. Appl. , Volume 178 (1993), pp. 102-115

Cité par Sources :