Voir la notice de l'article provenant de la source International Scientific Research Publications
HANAFY, I. M. 1
@article{JNSA_2009_2_1_a4, author = {HANAFY, I. M.}, title = {\(\beta {S^*\)-COMPACTNESS} {IN} {L-FUZZY} {TOPOLOGICAL} {SPACES}}, journal = {Journal of nonlinear sciences and its applications}, pages = {27-37}, publisher = {mathdoc}, volume = {2}, number = {1}, year = {2009}, doi = {10.22436/jnsa.002.01.05}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.002.01.05/} }
TY - JOUR AU - HANAFY, I. M. TI - \(\beta S^*\)-COMPACTNESS IN L-FUZZY TOPOLOGICAL SPACES JO - Journal of nonlinear sciences and its applications PY - 2009 SP - 27 EP - 37 VL - 2 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.002.01.05/ DO - 10.22436/jnsa.002.01.05 LA - en ID - JNSA_2009_2_1_a4 ER -
%0 Journal Article %A HANAFY, I. M. %T \(\beta S^*\)-COMPACTNESS IN L-FUZZY TOPOLOGICAL SPACES %J Journal of nonlinear sciences and its applications %D 2009 %P 27-37 %V 2 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.002.01.05/ %R 10.22436/jnsa.002.01.05 %G en %F JNSA_2009_2_1_a4
HANAFY, I. M. \(\beta S^*\)-COMPACTNESS IN L-FUZZY TOPOLOGICAL SPACES. Journal of nonlinear sciences and its applications, Tome 2 (2009) no. 1, p. 27-37. doi : 10.22436/jnsa.002.01.05. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.002.01.05/
[1] On some applications of lattices, Ph. D. Thesis, Al-Azhar Univ., Cairo, Egypt , 1998
[2] On fuzzy semicontinuity, fuzzy almost continuity and fuzzy weakly continuity, J. Math. Anal. Appl., Volume 82 (1981), pp. 14-32
[3] On fuzzy \(\beta \)−compact spaces and fuzzy \(\beta \)− extremally disconnected spaces, Kybernetika [cybernetics], Volume 33 (1997), pp. 271-277
[4] Fuzzy topological spaces, J. Math. Anal. Appl., Volume 24 (1986), pp. 182-190
[5] On fuzzy topological spaces, Ph. D. Thesis, Assiut Univ., Sohag, Egypt , 1984
[6] Compactness in fuzzy topological spaces, J. Math. Anal. Appl., Volume 62 (1978), pp. 547-562
[7] A compendium of continuous lattices, Springer Verlag, Berlin , 1980
[8] The fuzzy Tychonoff theorem, J. Math. Anal. Appl., Volume 43 (1973), pp. 734-742
[9] Fuzzy \(\beta \)−compactness and fuzzy \(\beta \)−closed spaces, Turk J. Math., Volume 28 (2004), pp. 281-293
[10] Fuzzy topology, World Scientific, Singapore, 1997
[11] Fuzzy topological spaces and fuzzy compactness, J. Math. Anal. Appl., Volume 56 (1976), pp. 621-633
[12] A comparison of different compactness notions in fuzzy topological spaces, J. Math. Anal. Appl., Volume 64 (1978), pp. 446-454
[13] Converges in fuzzy topological spaces, General topology and its applications, Volume 10 (1979), pp. 147-160
[14] \(\alpha \)−separation axioms and \(\alpha \)−compactness in fuzzy topological spaces, Rocky Mount J.Math., Volume 6 (1986), pp. 591-600
[15] A new notion of fuzzy compactness in L−topological spaces, Information Sciences, Volume 173 (2005), pp. 35-48
[16] Theory of \(L_\beta \)−nested sets and \(L_\alpha\)−nested sets and its applications, Fuzzy Sets and Systems, Volume 4 (1995), pp. 65-72
[17] Theory of L−fuzzy topological space, Shaanxi normal University Publishers, Xian, 1988
[18] A new fuzzy compactness defined by fuzzy nets, J. Math. Anal. Appl., Volume 94 (1983), pp. 1-23
[19] The N−compactness in L−fuzzy topological spaces , J. Math. Anal. Appl., Volume 128 (1987), pp. 46-70
Cité par Sources :