$\beta S^*$-COMPACTNESS IN L-FUZZY TOPOLOGICAL SPACES
Journal of nonlinear sciences and its applications, Tome 2 (2009) no. 1, p. 27-37.

Voir la notice de l'article provenant de la source International Scientific Research Publications

In this paper, the notion of $\beta S^*$−compactness is introduced in L−fuzzy topological spaces based on $S^*$−compactness. A $\beta S^*$−compactness L-fuzzy set is $S^*$−compactness and also $\beta $−compactness. Some of its properties are discussed. We give some characterizations of $\beta S^*$−compactness in terms of pre-open, regular open and semi-open L−fuzzy set. It is proved that $\beta S^*$−compactness is a good extension of $\beta $−compactness in general topology. Also, we investigated the preservation theorems of $\beta S^*$−compactness under some types of continuity.
DOI : 10.22436/jnsa.002.01.05
Classification : 54A20
Keywords: L−fuzzy topological spaces, fuzzy \(\beta S^*\)−compactness, local \(\beta S^*\)−compactness, \(\beta_a\) − cover, \(Q_a\) − cover.

HANAFY, I. M. 1

1 Department of Mathematics, Faculty of Education, Suez Canal University, El-Arish, Egypt
@article{JNSA_2009_2_1_a4,
     author = {HANAFY, I. M.},
     title = {\(\beta {S^*\)-COMPACTNESS} {IN} {L-FUZZY} {TOPOLOGICAL} {SPACES}},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {27-37},
     publisher = {mathdoc},
     volume = {2},
     number = {1},
     year = {2009},
     doi = {10.22436/jnsa.002.01.05},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.002.01.05/}
}
TY  - JOUR
AU  - HANAFY, I. M.
TI  - \(\beta S^*\)-COMPACTNESS IN L-FUZZY TOPOLOGICAL SPACES
JO  - Journal of nonlinear sciences and its applications
PY  - 2009
SP  - 27
EP  - 37
VL  - 2
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.002.01.05/
DO  - 10.22436/jnsa.002.01.05
LA  - en
ID  - JNSA_2009_2_1_a4
ER  - 
%0 Journal Article
%A HANAFY, I. M.
%T \(\beta S^*\)-COMPACTNESS IN L-FUZZY TOPOLOGICAL SPACES
%J Journal of nonlinear sciences and its applications
%D 2009
%P 27-37
%V 2
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.002.01.05/
%R 10.22436/jnsa.002.01.05
%G en
%F JNSA_2009_2_1_a4
HANAFY, I. M. \(\beta S^*\)-COMPACTNESS IN L-FUZZY TOPOLOGICAL SPACES. Journal of nonlinear sciences and its applications, Tome 2 (2009) no. 1, p. 27-37. doi : 10.22436/jnsa.002.01.05. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.002.01.05/

[1] Aggour, A. I. On some applications of lattices, Ph. D. Thesis, Al-Azhar Univ., Cairo, Egypt , 1998

[2] Azad, K. K. On fuzzy semicontinuity, fuzzy almost continuity and fuzzy weakly continuity, J. Math. Anal. Appl., Volume 82 (1981), pp. 14-32

[3] Ganesan Balasubramanian On fuzzy \(\beta \)−compact spaces and fuzzy \(\beta \)− extremally disconnected spaces, Kybernetika [cybernetics], Volume 33 (1997), pp. 271-277

[4] C. L. Chang Fuzzy topological spaces, J. Math. Anal. Appl., Volume 24 (1986), pp. 182-190

[5] Alla, M. A. Fath On fuzzy topological spaces, Ph. D. Thesis, Assiut Univ., Sohag, Egypt , 1984

[6] Gantner, T. E.; Steinlage, R. C.; R. H. Warren Compactness in fuzzy topological spaces, J. Math. Anal. Appl., Volume 62 (1978), pp. 547-562

[7] Gierz, G.; et al A compendium of continuous lattices, Springer Verlag, Berlin , 1980

[8] Goguen, R. The fuzzy Tychonoff theorem, J. Math. Anal. Appl., Volume 43 (1973), pp. 734-742

[9] Hanafy, I. M. Fuzzy \(\beta \)−compactness and fuzzy \(\beta \)−closed spaces, Turk J. Math., Volume 28 (2004), pp. 281-293

[10] Liu, Y. M.; Luo, M. K Fuzzy topology, World Scientific, Singapore, 1997

[11] Lowen, R. Fuzzy topological spaces and fuzzy compactness, J. Math. Anal. Appl., Volume 56 (1976), pp. 621-633

[12] Lowen, R. A comparison of different compactness notions in fuzzy topological spaces, J. Math. Anal. Appl., Volume 64 (1978), pp. 446-454

[13] Lowen, R. Converges in fuzzy topological spaces, General topology and its applications, Volume 10 (1979), pp. 147-160

[14] Mashhour, A. S.; Ghanim, M. H.; Alla, M. A. Fath \(\alpha \)−separation axioms and \(\alpha \)−compactness in fuzzy topological spaces, Rocky Mount J.Math., Volume 6 (1986), pp. 591-600

[15] F. G. Shi A new notion of fuzzy compactness in L−topological spaces, Information Sciences, Volume 173 (2005), pp. 35-48

[16] Shi, F. G. Theory of \(L_\beta \)−nested sets and \(L_\alpha\)−nested sets and its applications, Fuzzy Sets and Systems, Volume 4 (1995), pp. 65-72

[17] Wang, G. J. Theory of L−fuzzy topological space, Shaanxi normal University Publishers, Xian, 1988

[18] Wang, G. J. A new fuzzy compactness defined by fuzzy nets, J. Math. Anal. Appl., Volume 94 (1983), pp. 1-23

[19] Zhao, D. S. The N−compactness in L−fuzzy topological spaces , J. Math. Anal. Appl., Volume 128 (1987), pp. 46-70

Cité par Sources :