LOCAL CONVERGENCE ANALYSIS OF INEXACT NEWTON-LIKE METHODS
Journal of nonlinear sciences and its applications, Tome 2 (2009) no. 1, p. 11-18.

Voir la notice de l'article provenant de la source International Scientific Research Publications

We provide a local convergence analysis of inexact Newton–like methods in a Banach space setting under flexible majorant conditions. By introducing center–Lipschitz–type condition, we provide (under the same computational cost) a convergence analysis with the following advantages over earlier work [9]: finer error bounds on the distances involved, and a larger radius of convergence. Special cases and applications are also provided in this study.
DOI : 10.22436/jnsa.002.01.02
Classification : 65H10, 65G99, 90C30, 49M15, 47J20
Keywords: Inexact Newton–like method, Banach space, Majorant conditions, Local convergence.

ARGYROS , IOANNIS K.  1 ; HILOUT, SAID 2

1 Cameron university, Department of Mathematics Sciences, Lawton, OK 73505, USA.
2 Poitiers university, Laboratoire de Mathématiques et Applications, Bd. Pierre et Marie Curie, Téléport 2, B.P. 30179, 86962 Futuroscope Chasseneuil Cedex, France.
@article{JNSA_2009_2_1_a1,
     author = {ARGYROS , IOANNIS K.  and HILOUT, SAID},
     title = {LOCAL {CONVERGENCE} {ANALYSIS} {OF} {INEXACT} {NEWTON-LIKE} {METHODS}},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {11-18},
     publisher = {mathdoc},
     volume = {2},
     number = {1},
     year = {2009},
     doi = {10.22436/jnsa.002.01.02},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.002.01.02/}
}
TY  - JOUR
AU  - ARGYROS , IOANNIS K. 
AU  - HILOUT, SAID
TI  - LOCAL CONVERGENCE ANALYSIS OF INEXACT NEWTON-LIKE METHODS
JO  - Journal of nonlinear sciences and its applications
PY  - 2009
SP  - 11
EP  - 18
VL  - 2
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.002.01.02/
DO  - 10.22436/jnsa.002.01.02
LA  - en
ID  - JNSA_2009_2_1_a1
ER  - 
%0 Journal Article
%A ARGYROS , IOANNIS K. 
%A HILOUT, SAID
%T LOCAL CONVERGENCE ANALYSIS OF INEXACT NEWTON-LIKE METHODS
%J Journal of nonlinear sciences and its applications
%D 2009
%P 11-18
%V 2
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.002.01.02/
%R 10.22436/jnsa.002.01.02
%G en
%F JNSA_2009_2_1_a1
ARGYROS , IOANNIS K. ; HILOUT, SAID. LOCAL CONVERGENCE ANALYSIS OF INEXACT NEWTON-LIKE METHODS. Journal of nonlinear sciences and its applications, Tome 2 (2009) no. 1, p. 11-18. doi : 10.22436/jnsa.002.01.02. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.002.01.02/

[1] Argyros, I. K. Relation between forcing sequences and inexact Newton iterates in Banach space, Computing, Volume 63 (1999), pp. 134-144

[2] Argyros, I. K. Forcing sequences and inexact Newton iterates in Banach space, Appl. Math. Lett. , Volume 13 (2000), pp. 69-75

[3] Argyros, I. K. A unifying local–semilocal convergence analysis and applications for two– point Newton–like methods in Banach space, J. Math. Anal. Appl. , Volume 298 (2004), pp. 374-397

[4] Argyros, I. K. Computational theory of iterative methods, Series: Studies in Computational Mathematics, 15, Editors: C.K. Chui and L. Wuytack, Elsevier Publ. Co., New York, USA, 2007

[5] Argyros, I. K. Convergence and applications of Newton–type iterations, Springer–Verlag Publ., New York, 2008

[6] Argyros, I. K. On the semilocal convergence of inexact Newton methods in Banach spaces, J. Comput. Appl. Math. in press (doi:10.1016/j.cam.2008.10.005. )

[7] Chen, J.; W. Li Convergence behaviour of inexact Newton methods under weak Lipschitz condition, J. Comput. Appl. Math. , Volume 191 (2006), pp. 143-164

[8] Dennis, J. F. Toward a unified convergence theory for Newton–like methods, in Nonlinear Functional Analysis and Applications (L.B. Rall, ed.), Academic Press, New York (1971), pp. 425-472

[9] Ferreira, O. P.; Goncalves, M. L. N. Local convergence analysis of inexact Newton–like methods under majorant condition, preprint, http://arxiv.org/abs/0807.3903?context=math.OC. (document)

[10] Guo, X. On semilocal convergence of inexact Newton methods, J. Comput. Math., Volume 25 (2007), pp. 231-242

[11] Huang, Z. A. Convergence of inexact Newton method, J. Zhejiang Univ. Sci. Ed., Volume 30 (2003), pp. 393-396

[12] Kantorovich, L. V.; Akilov, G. P. Functional Analysis, Pergamon Press, Oxford, 1982

[13] Morini, B. Convergence behaviour of inexact Newton methods, Math. Comp. , Volume 68 (1999), pp. 1605-1613

[14] F. A. Potra Sharp error bounds for a class of Newton–like methods, Libertas Mathematica. , Volume 5 (1985), pp. 71-84

[15] Wang, X. H.; C. Li Convergence of Newton’s method and uniqueness of the solution of equations in Banach spaces, II, Acta Math. Sin. (Engl. Ser.) , Volume 19 (2003), pp. 405-412

Cité par Sources :