Voir la notice de l'article provenant de la source International Scientific Research Publications
ARGYROS , IOANNIS K.  1 ; HILOUT, SAID 2
@article{JNSA_2009_2_1_a1, author = {ARGYROS , IOANNIS K. and HILOUT, SAID}, title = {LOCAL {CONVERGENCE} {ANALYSIS} {OF} {INEXACT} {NEWTON-LIKE} {METHODS}}, journal = {Journal of nonlinear sciences and its applications}, pages = {11-18}, publisher = {mathdoc}, volume = {2}, number = {1}, year = {2009}, doi = {10.22436/jnsa.002.01.02}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.002.01.02/} }
TY - JOUR AU - ARGYROS , IOANNIS K. AU - HILOUT, SAID TI - LOCAL CONVERGENCE ANALYSIS OF INEXACT NEWTON-LIKE METHODS JO - Journal of nonlinear sciences and its applications PY - 2009 SP - 11 EP - 18 VL - 2 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.002.01.02/ DO - 10.22436/jnsa.002.01.02 LA - en ID - JNSA_2009_2_1_a1 ER -
%0 Journal Article %A ARGYROS , IOANNIS K. %A HILOUT, SAID %T LOCAL CONVERGENCE ANALYSIS OF INEXACT NEWTON-LIKE METHODS %J Journal of nonlinear sciences and its applications %D 2009 %P 11-18 %V 2 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.002.01.02/ %R 10.22436/jnsa.002.01.02 %G en %F JNSA_2009_2_1_a1
ARGYROS , IOANNIS K. ; HILOUT, SAID. LOCAL CONVERGENCE ANALYSIS OF INEXACT NEWTON-LIKE METHODS. Journal of nonlinear sciences and its applications, Tome 2 (2009) no. 1, p. 11-18. doi : 10.22436/jnsa.002.01.02. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.002.01.02/
[1] Relation between forcing sequences and inexact Newton iterates in Banach space, Computing, Volume 63 (1999), pp. 134-144
[2] Forcing sequences and inexact Newton iterates in Banach space, Appl. Math. Lett. , Volume 13 (2000), pp. 69-75
[3] A unifying local–semilocal convergence analysis and applications for two– point Newton–like methods in Banach space, J. Math. Anal. Appl. , Volume 298 (2004), pp. 374-397
[4] Computational theory of iterative methods, Series: Studies in Computational Mathematics, 15, Editors: C.K. Chui and L. Wuytack, Elsevier Publ. Co., New York, USA, 2007
[5] Convergence and applications of Newton–type iterations, Springer–Verlag Publ., New York, 2008
[6] On the semilocal convergence of inexact Newton methods in Banach spaces, J. Comput. Appl. Math. in press (doi:10.1016/j.cam.2008.10.005. )
[7] Convergence behaviour of inexact Newton methods under weak Lipschitz condition, J. Comput. Appl. Math. , Volume 191 (2006), pp. 143-164
[8] Toward a unified convergence theory for Newton–like methods, in Nonlinear Functional Analysis and Applications (L.B. Rall, ed.), Academic Press, New York (1971), pp. 425-472
[9] Local convergence analysis of inexact Newton–like methods under majorant condition, preprint, http://arxiv.org/abs/0807.3903?context=math.OC. (document)
[10] On semilocal convergence of inexact Newton methods, J. Comput. Math., Volume 25 (2007), pp. 231-242
[11] Convergence of inexact Newton method, J. Zhejiang Univ. Sci. Ed., Volume 30 (2003), pp. 393-396
[12] Functional Analysis, Pergamon Press, Oxford, 1982
[13] Convergence behaviour of inexact Newton methods, Math. Comp. , Volume 68 (1999), pp. 1605-1613
[14] Sharp error bounds for a class of Newton–like methods, Libertas Mathematica. , Volume 5 (1985), pp. 71-84
[15] Convergence of Newton’s method and uniqueness of the solution of equations in Banach spaces, II, Acta Math. Sin. (Engl. Ser.) , Volume 19 (2003), pp. 405-412
Cité par Sources :