LOCAL CONVERGENCE ANALYSIS FOR A CERTAIN CLASS OF INEXACT METHODS
Journal of nonlinear sciences and its applications, Tome 1 (2008) no. 4, p. 244-253.

Voir la notice de l'article provenant de la source International Scientific Research Publications

We provide a local convergence analysis for a certain class inexact methods in a Banach space setting, in order to approximate a solution of a nonlinear equation [6]. The assumptions involve center-Lipschitz-type and radius-Lipschitz-type conditions [15], [8], [5]. Our results have the following advantages (under the same computational cost): larger radii, and finer error bounds on the distances involved than in [8], [15] in many interesting cases. Numerical examples further validating the theoretical results are also provided in this study.
DOI : 10.22436/jnsa.001.04.08
Classification : 65K10, 65G99, 65J99, 65H10, 49M15, 47J20
Keywords: Inexact Newton method, Banach space, Local convergence, Convergence radii.

ARGYROS , IOANNIS K. 1 ; HILOUT, SAÏD  2

1 Cameron university, Department of Mathematics Sciences, Lawton, OK 73505, USA.
2 Poitiers university, Laboratoire de Mathématiques et Applications, Bd. Pierre et Marie Curie, Téléport 2, B.P. 30179, 86962 Futuroscope Chasseneuil Cedex, France.
@article{JNSA_2008_1_4_a7,
     author = {ARGYROS , IOANNIS K. and HILOUT, SA\"ID },
     title = {LOCAL {CONVERGENCE} {ANALYSIS} {FOR} {A} {CERTAIN} {CLASS} {OF} {INEXACT} {METHODS}},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {244-253},
     publisher = {mathdoc},
     volume = {1},
     number = {4},
     year = {2008},
     doi = {10.22436/jnsa.001.04.08},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.001.04.08/}
}
TY  - JOUR
AU  - ARGYROS , IOANNIS K.
AU  - HILOUT, SAÏD 
TI  - LOCAL CONVERGENCE ANALYSIS FOR A CERTAIN CLASS OF INEXACT METHODS
JO  - Journal of nonlinear sciences and its applications
PY  - 2008
SP  - 244
EP  - 253
VL  - 1
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.001.04.08/
DO  - 10.22436/jnsa.001.04.08
LA  - en
ID  - JNSA_2008_1_4_a7
ER  - 
%0 Journal Article
%A ARGYROS , IOANNIS K.
%A HILOUT, SAÏD 
%T LOCAL CONVERGENCE ANALYSIS FOR A CERTAIN CLASS OF INEXACT METHODS
%J Journal of nonlinear sciences and its applications
%D 2008
%P 244-253
%V 1
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.001.04.08/
%R 10.22436/jnsa.001.04.08
%G en
%F JNSA_2008_1_4_a7
ARGYROS , IOANNIS K.; HILOUT, SAÏD . LOCAL CONVERGENCE ANALYSIS FOR A CERTAIN CLASS OF INEXACT METHODS. Journal of nonlinear sciences and its applications, Tome 1 (2008) no. 4, p. 244-253. doi : 10.22436/jnsa.001.04.08. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.001.04.08/

[1] Argyros, I. K. The theory and application of abstract polynomial equations, St.Lucie/CRC/Lewis Publ. Mathematics series, , Boca Raton, Florida, U.S.A., 1998

[2] Argyros, I. K. Relation between forcing sequences and inexact Newton iterates in Banach space, Computing, Volume 63 (1999), pp. 131-144 | DOI

[3] Argyros, I. K. Forcing sequences and inexact Newton iterates in Banach space, Appl. Math. Lett., Volume 13 (2000), pp. 77-80 | DOI

[4] Argyros, I. K. A unifying local-semilocal convergence analysis and applications for two-point Newton-like methods in Banach space, J. Math. Anal. Appl., Volume 298 (2004), pp. 374-397 | Zbl | DOI

[5] Argyros, I. K. Computational theory of iterative methods, Series: Studies in Computational Mathematics, 15, Editors: C.K. Chui and L. Wuytack, Elsevier Publ. Co., New York, USA, 2007

[6] Argyros, I. K. Convergence and applications of Newton-type iterations, Springer-Verlag Publ., New York, 2008

[7] Argyros, I. K. On the semilocal convergence of inexact Newton methods in Banach spaces, J. Comput. Appl. Math. in press, Volume 228 (2009), pp. 434-443 | DOI | Zbl

[8] Chen, J.; W. Li Convergence behaviour of inexact Newton methods under weak Lipschitz condition, J. Comput. Appl. Math. , Volume 191 (2006), pp. 143-164 | DOI | Zbl

[9] Dennis, J. F. Toward a unified convergence theory for Newton-like methods, in Nonlinear Functional Analysis and Applications (L.B. Rall, ed.), Academic Press, New York (1971), pp. 425-472 | DOI | Zbl

[10] Guo, X. On semilocal convergence of inexact Newton methods, J. Comput. Math. , Volume 25 (2007), pp. 231-242

[11] Huang, Z. A. Convergence of inexact Newton method, J. Zhejiang Univ. Sci. Ed. , Volume 30 (2003), pp. 393-396

[12] Kantorovich, L. V.; Akilov, G. P. Functional Analysis, Pergamon Press, Oxford, 1982

[13] Morini, B. Convergence behaviour of inexact Newton methods, Math. Comp., Volume 68 (1999), pp. 1605-1613 | DOI

[14] F. A. Potra Sharp error bounds for a class of Newton-like methods, Libertas Mathematica., Volume 5 (1985), pp. 71-84 | Zbl

[15] Wang, X. H.; Li, C. Convergence of Newton's method and uniqueness of the solution of equations in Banach spaces, II, Acta Math. Sin. (Engl. Ser.) , Volume 19 (2003), pp. 405-412 | DOI | Zbl

Cité par Sources :