Voir la notice de l'article provenant de la source International Scientific Research Publications
ARGYROS , IOANNIS K. 1 ; HILOUT, SAÏD  2
@article{JNSA_2008_1_4_a7, author = {ARGYROS , IOANNIS K. and HILOUT, SA\"ID }, title = {LOCAL {CONVERGENCE} {ANALYSIS} {FOR} {A} {CERTAIN} {CLASS} {OF} {INEXACT} {METHODS}}, journal = {Journal of nonlinear sciences and its applications}, pages = {244-253}, publisher = {mathdoc}, volume = {1}, number = {4}, year = {2008}, doi = {10.22436/jnsa.001.04.08}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.001.04.08/} }
TY - JOUR AU - ARGYROS , IOANNIS K. AU - HILOUT, SAÏD TI - LOCAL CONVERGENCE ANALYSIS FOR A CERTAIN CLASS OF INEXACT METHODS JO - Journal of nonlinear sciences and its applications PY - 2008 SP - 244 EP - 253 VL - 1 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.001.04.08/ DO - 10.22436/jnsa.001.04.08 LA - en ID - JNSA_2008_1_4_a7 ER -
%0 Journal Article %A ARGYROS , IOANNIS K. %A HILOUT, SAÏD %T LOCAL CONVERGENCE ANALYSIS FOR A CERTAIN CLASS OF INEXACT METHODS %J Journal of nonlinear sciences and its applications %D 2008 %P 244-253 %V 1 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.001.04.08/ %R 10.22436/jnsa.001.04.08 %G en %F JNSA_2008_1_4_a7
ARGYROS , IOANNIS K.; HILOUT, SAÏD . LOCAL CONVERGENCE ANALYSIS FOR A CERTAIN CLASS OF INEXACT METHODS. Journal of nonlinear sciences and its applications, Tome 1 (2008) no. 4, p. 244-253. doi : 10.22436/jnsa.001.04.08. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.001.04.08/
[1] The theory and application of abstract polynomial equations, St.Lucie/CRC/Lewis Publ. Mathematics series, , Boca Raton, Florida, U.S.A., 1998
[2] Relation between forcing sequences and inexact Newton iterates in Banach space, Computing, Volume 63 (1999), pp. 131-144 | DOI
[3] Forcing sequences and inexact Newton iterates in Banach space, Appl. Math. Lett., Volume 13 (2000), pp. 77-80 | DOI
[4] A unifying local-semilocal convergence analysis and applications for two-point Newton-like methods in Banach space, J. Math. Anal. Appl., Volume 298 (2004), pp. 374-397 | Zbl | DOI
[5] Computational theory of iterative methods, Series: Studies in Computational Mathematics, 15, Editors: C.K. Chui and L. Wuytack, Elsevier Publ. Co., New York, USA, 2007
[6] Convergence and applications of Newton-type iterations, Springer-Verlag Publ., New York, 2008
[7] On the semilocal convergence of inexact Newton methods in Banach spaces, J. Comput. Appl. Math. in press, Volume 228 (2009), pp. 434-443 | DOI | Zbl
[8] Convergence behaviour of inexact Newton methods under weak Lipschitz condition, J. Comput. Appl. Math. , Volume 191 (2006), pp. 143-164 | DOI | Zbl
[9] Toward a unified convergence theory for Newton-like methods, in Nonlinear Functional Analysis and Applications (L.B. Rall, ed.), Academic Press, New York (1971), pp. 425-472 | DOI | Zbl
[10] On semilocal convergence of inexact Newton methods, J. Comput. Math. , Volume 25 (2007), pp. 231-242
[11] Convergence of inexact Newton method, J. Zhejiang Univ. Sci. Ed. , Volume 30 (2003), pp. 393-396
[12] Functional Analysis, Pergamon Press, Oxford, 1982
[13] Convergence behaviour of inexact Newton methods, Math. Comp., Volume 68 (1999), pp. 1605-1613 | DOI
[14] Sharp error bounds for a class of Newton-like methods, Libertas Mathematica., Volume 5 (1985), pp. 71-84 | Zbl
[15] Convergence of Newton's method and uniqueness of the solution of equations in Banach spaces, II, Acta Math. Sin. (Engl. Ser.) , Volume 19 (2003), pp. 405-412 | DOI | Zbl
Cité par Sources :