ON $\Phi$-FIXED POINT FOR MAPS ON UNIFORM SPACES
Journal of nonlinear sciences and its applications, Tome 1 (2008) no. 4, p. 241-243.

Voir la notice de l'article provenant de la source International Scientific Research Publications

The concept of fixed point is extended to $\Phi$-fixed point for those maps on uniform spaces. Two results are presented, first for single-valued maps and second for set-valued maps.
DOI : 10.22436/jnsa.001.04.07
Classification : 47H10
Keywords: Uniform space, \(\Phi\)-fixed point, Single-valued, set-valued.

ALIMOHAMMADY , M.  1 ; RAMZANNEZHAD, M.  1

1 Department of Mathematics, University of Mazandaran, Babolsar, Iran.
@article{JNSA_2008_1_4_a6,
     author = {ALIMOHAMMADY , M.  and RAMZANNEZHAD, M. },
     title = {ON {\(\Phi\)-FIXED} {POINT} {FOR} {MAPS} {ON} {UNIFORM} {SPACES}},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {241-243},
     publisher = {mathdoc},
     volume = {1},
     number = {4},
     year = {2008},
     doi = {10.22436/jnsa.001.04.07},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.001.04.07/}
}
TY  - JOUR
AU  - ALIMOHAMMADY , M. 
AU  - RAMZANNEZHAD, M. 
TI  - ON \(\Phi\)-FIXED POINT FOR MAPS ON UNIFORM SPACES
JO  - Journal of nonlinear sciences and its applications
PY  - 2008
SP  - 241
EP  - 243
VL  - 1
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.001.04.07/
DO  - 10.22436/jnsa.001.04.07
LA  - en
ID  - JNSA_2008_1_4_a6
ER  - 
%0 Journal Article
%A ALIMOHAMMADY , M. 
%A RAMZANNEZHAD, M. 
%T ON \(\Phi\)-FIXED POINT FOR MAPS ON UNIFORM SPACES
%J Journal of nonlinear sciences and its applications
%D 2008
%P 241-243
%V 1
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.001.04.07/
%R 10.22436/jnsa.001.04.07
%G en
%F JNSA_2008_1_4_a6
ALIMOHAMMADY , M. ; RAMZANNEZHAD, M. . ON \(\Phi\)-FIXED POINT FOR MAPS ON UNIFORM SPACES. Journal of nonlinear sciences and its applications, Tome 1 (2008) no. 4, p. 241-243. doi : 10.22436/jnsa.001.04.07. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.001.04.07/

[1] Alimohammady, M.; Roohi, M. Fixed point in minimal spaces, Nonlinear Analysis:Moddeling and Control, Volume 10/4 (2005), pp. 305-314

[2] Branciari, A. A fixed point theorem for mappings satisfying a general contractive condition of integral type, Int. J. Math. Sci, Volume 29 (2002), pp. 531-536

[3] Covitz, H.; Jr, S. B. Nadler Multi-valued contraction mappings in generalized metric space, Israel J. Math. , Volume 8 (1970), pp. 5-11 | DOI

[4] Ciric, Lj. B. Fixed point theorems in topological spaces, Fund. Math. , Volume 87 (1975), pp. 1-5

[5] Robertson, A. P.; Robertson, W. Topological Vector Spaces, Cambridge University Press, , 1973

[6] Khamsi, M. A.; Kirk, W. A. An introduction to metric spaces and fixed point theory, John Wiely.(MR1818603), New Yourk, 2001 | DOI

[7] B. T. Sims Fundamentals of topologics, Macmillan publishing co., Inc., New York, 1976

Cité par Sources :