NEW SOLITONS AND PERIODIC SOLUTIONS FOR THEKADOMTSEV-PETVIASHVILI EQUATION
Journal of nonlinear sciences and its applications, Tome 1 (2008) no. 4, p. 224-229.

Voir la notice de l'article provenant de la source International Scientific Research Publications

In this paper, the sine-cosine, the standard tanh and the extended tanh methods has been used to obtain solutions of the Kadomstev- Petviashvili(KP) equation. New solitons solutions and periodic solutions are formally derived. The change of parameters, that will drastically change characteristics of the equation, is examined.
DOI : 10.22436/jnsa.001.04.04
Classification : 37K40, 76B25
Keywords: The sine-cosine method, The standard tanh and the extended tanh methods, The Kadomtsev-Petviashvili equation.

BORHANIFAR, A. 1 ; JAFARI , H.  2 ; KARIMI, S. A.  1

1 Department of Mathematics, University of Mohaghegh Ardabili,Ardabil, Iran.
2 Department of Mathematics and Computer science, University of Mazandaran,P. O. BOX 47416-95447 Babolsar, Iran.
@article{JNSA_2008_1_4_a3,
     author = {BORHANIFAR, A. and JAFARI  , H.  and KARIMI, S. A. },
     title = {NEW {SOLITONS} {AND} {PERIODIC} {SOLUTIONS} {FOR} {THEKADOMTSEV-PETVIASHVILI} {EQUATION}},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {224-229},
     publisher = {mathdoc},
     volume = {1},
     number = {4},
     year = {2008},
     doi = {10.22436/jnsa.001.04.04},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.001.04.04/}
}
TY  - JOUR
AU  - BORHANIFAR, A.
AU  - JAFARI  , H. 
AU  - KARIMI, S. A. 
TI  - NEW SOLITONS AND PERIODIC SOLUTIONS FOR THEKADOMTSEV-PETVIASHVILI EQUATION
JO  - Journal of nonlinear sciences and its applications
PY  - 2008
SP  - 224
EP  - 229
VL  - 1
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.001.04.04/
DO  - 10.22436/jnsa.001.04.04
LA  - en
ID  - JNSA_2008_1_4_a3
ER  - 
%0 Journal Article
%A BORHANIFAR, A.
%A JAFARI  , H. 
%A KARIMI, S. A. 
%T NEW SOLITONS AND PERIODIC SOLUTIONS FOR THEKADOMTSEV-PETVIASHVILI EQUATION
%J Journal of nonlinear sciences and its applications
%D 2008
%P 224-229
%V 1
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.001.04.04/
%R 10.22436/jnsa.001.04.04
%G en
%F JNSA_2008_1_4_a3
BORHANIFAR, A.; JAFARI  , H. ; KARIMI, S. A. . NEW SOLITONS AND PERIODIC SOLUTIONS FOR THEKADOMTSEV-PETVIASHVILI EQUATION. Journal of nonlinear sciences and its applications, Tome 1 (2008) no. 4, p. 224-229. doi : 10.22436/jnsa.001.04.04. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.001.04.04/

[1] Malfliet, W.; Hereman, W . The tanh method: I Exact solution of nonlinear evolution and wave equation , Phys. Scr., Volume 54 (1996), pp. 563-568 | DOI

[2] Malfliet, W.; Hereman, W . The tanh method: II Perturbation technique for conservative system, Phys. Scr., Volume 54 (1996), pp. 569-575 | DOI

[3] Wazwaz, A. M. Partial Differential Equations: Methods and Applications, Balkema, Rotterdam, 2002

[4] Wazwaz, A. M. Dustinct variants of the KdV equation with compact and noncompact structures, Appl. Math. Comput., Volume 150 (2004), pp. 365-377 | DOI

[5] Wazwaz, A. M. Variants of the generalized KdV eauation with compact and noncompact structures, Comput. Math. Appl., Volume 47 (2004), pp. 583-591 | DOI

[6] Wazwaz, A. M. An analytical study of the compactons structures in a class of nonlinear dispersive equation, Math Comput Simulation, Volume 63(1) (2003), pp. 35-44 | DOI

[7] Wazwaz, A. M. A computational approachto soliton solutions of the Kadomtsev-Petviashili equation, Comput. Math. Appl., Volume 123(2) (2001), pp. 205-217 | DOI

[8] Wazwaz, A. M. The extended tenh method for Zhakharov-Kkuznetsov (ZK) equation, the modified ZK equation and its generalized forms, Communications in Nonlinear Science and Numerical Simulation, Volume 13(6) (2008), pp. 1039-1047

[9] Wazwaz, A. M. Multiple-front solutions for the Burgers-Kadomtsev-petviashvili equation, Applied Mathematics and Computation, Volume 200 (2008), pp. 437-443 | Zbl | DOI

Cité par Sources :