EXISTENCE AND UNIQUENESS OF FRACTIONAL DIFFERENTIAL EQUATIONS WITH INTEGRAL BOUNDARY CONDITIONS
Journal of nonlinear sciences and its applications, Tome 1 (2008) no. 4, p. 206-212.

Voir la notice de l'article provenant de la source International Scientific Research Publications

In this article, the recently developed monotonous iterative method is used to investigate fractional differential equations involving Riemann-Liouville differential operators with integral boundary conditions. The existence and uniqueness of solutions are obtained.
DOI : 10.22436/jnsa.001.04.02
Classification : 26A33, 45D05
Keywords: Fractional differential equations, integral boundary condition, monotonous iterative method.

WANG , TAIGE  1 ; XIE, FENG 1

1 Department of Applied Mathematics, Donghua University, Shanghai 201620, China.
@article{JNSA_2008_1_4_a1,
     author = {WANG , TAIGE  and XIE, FENG},
     title = {EXISTENCE {AND} {UNIQUENESS} {OF} {FRACTIONAL} {DIFFERENTIAL} {EQUATIONS} {WITH} {INTEGRAL} {BOUNDARY} {CONDITIONS}},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {206-212},
     publisher = {mathdoc},
     volume = {1},
     number = {4},
     year = {2008},
     doi = {10.22436/jnsa.001.04.02},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.001.04.02/}
}
TY  - JOUR
AU  - WANG , TAIGE 
AU  - XIE, FENG
TI  - EXISTENCE AND UNIQUENESS OF FRACTIONAL DIFFERENTIAL EQUATIONS WITH INTEGRAL BOUNDARY CONDITIONS
JO  - Journal of nonlinear sciences and its applications
PY  - 2008
SP  - 206
EP  - 212
VL  - 1
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.001.04.02/
DO  - 10.22436/jnsa.001.04.02
LA  - en
ID  - JNSA_2008_1_4_a1
ER  - 
%0 Journal Article
%A WANG , TAIGE 
%A XIE, FENG
%T EXISTENCE AND UNIQUENESS OF FRACTIONAL DIFFERENTIAL EQUATIONS WITH INTEGRAL BOUNDARY CONDITIONS
%J Journal of nonlinear sciences and its applications
%D 2008
%P 206-212
%V 1
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.001.04.02/
%R 10.22436/jnsa.001.04.02
%G en
%F JNSA_2008_1_4_a1
WANG , TAIGE ; XIE, FENG. EXISTENCE AND UNIQUENESS OF FRACTIONAL DIFFERENTIAL EQUATIONS WITH INTEGRAL BOUNDARY CONDITIONS. Journal of nonlinear sciences and its applications, Tome 1 (2008) no. 4, p. 206-212. doi : 10.22436/jnsa.001.04.02. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.001.04.02/

[1] He, J. H. Nonlinear oscillation with fractional derivative and its applications, International Conference on Vibrating Engineering, , Dalian, China (1998), pp. 288-291

[2] He, J. H. Some applications of nonlinear fractional differential equations and their approximations, Bull. Sci. Technol., Volume 15 (1999), pp. 86-90

[3] J. H. He Approximate analytical solution for seepage flow with fractional derivatives in porous media, Computer Methods in Applied Mechanics and Engineering , Volume 167 (1998), pp. 57-68 | DOI | Zbl

[4] He, J. H.; Wu, X. H. Variational iteration method: New development and applications, Computers & Mathematics with Applications , Volume 54 (2007), pp. 881-894 | Zbl | DOI

[5] Jankwoski, T. Differential equations with integral boundary conditions, Journal of Computational and Applied Mathematic, Volume 147 (2002), pp. 1-8 | DOI

[6] Lakshmikantham, V.; A. S. Vatsala Basic theory of fractional differential equation, Nonlinear Anal. TMA, Volume 69 (2008), pp. 2677-2682 | DOI

[7] Lakshmikantham, V.; Vatsala, A. S. General uniqueness and monotone iterative technique for fractional differential equations, Appl. Math. Lett., Volume 21 (2008), pp. 828-834 | Zbl | DOI

[8] Lakshmikantham, V.; Vatsala, A. S. Theory of fractional differential inequalities and applications, Communications in Applied Analysis., Volume 11 (2007), pp. 395-402

[9] Momani, S.; Z. Odibat Numerical comparison of methods for solving linear differential equations of fractional order, Chaos Solitons & Fractals, Volume 31 (2007), pp. 1248-1255 | DOI

[10] Odibat, Z.; Momani, S. Modified homotopy perturbation method: Application to quadratic Riccati differential equation of fractional order, Chaos Solitons & Fractals , Volume 36 (2008), pp. 167-174 | DOI | Zbl

[11] Odibat, Z.; Momani, S. Application of variational iteration method to nonlinear differential equations of fractional order, International Journal of Nonlinear Sciences and Numerical Simulation, Volume 7 (2006), pp. 27-34 | DOI

[12] Odibat, Z. Solitary solutions for the nonlinear dispersive K(m,n) equations with fractional time derivatives, Physics Letters , Volume A 370 (2007), pp. 295-301 | Zbl | DOI

[13] I. Podlubny Fractional Differential Equations , Academic Press, San Diego, 1999

[14] Samko, S. G.; Kilbas, A. A.; O. I. Marichev Fractional Integrals and Derivatives: Theory and Applications, Gordon and Breach, New York, 1993

[15] Wang, Q. Homotopy perturbation method for fractional KdV-Burgers equation, Chaos Solitons & Fractals , Volume 35 (2008), pp. 843-850 | DOI | Zbl

Cité par Sources :