RELATED FIXED POINT THEOREMS IN FUZZY METRIC SPACES
Journal of nonlinear sciences and its applications, Tome 1 (2008) no. 3, p. 194-202.

Voir la notice de l'article provenant de la source International Scientific Research Publications

We prove a related fixed point Theorem for four mappings which are not continuous in four fuzzy metric spaces, one of them is a sequentially compact fuzzy metric space. Our Theorem in the metric version generalizes Theorem 4 of [1]. Finally, We give a fuzzy version of Theorem 3 of [1].
DOI : 10.22436/jnsa.001.03.08
Classification : 47H10, 54H25
Keywords: Fuzzy metric space, implicit relation, sequentially compact Fuzzy metric space, related fixed point.

RAO, K. P. R. 1 ; ALIOUCHE , ABDELKRIM  2 ; BABU, G. RAVI 1

1 Dept. of Applied Mathematics, Acharya Nagarjuna, University-Nuzvid Campus, NUZVID-521 201, Krishna Dt., A.P., INDIA.
2 Department of Mathematics, University of Larbi Ben M' Hidi, Oum-El-Bouaghi, 04000, Algeria.
@article{JNSA_2008_1_3_a7,
     author = {RAO, K. P. R. and ALIOUCHE , ABDELKRIM  and BABU, G. RAVI},
     title = {RELATED {FIXED} {POINT} {THEOREMS} {IN} {FUZZY} {METRIC} {SPACES}},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {194-202},
     publisher = {mathdoc},
     volume = {1},
     number = {3},
     year = {2008},
     doi = {10.22436/jnsa.001.03.08},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.001.03.08/}
}
TY  - JOUR
AU  - RAO, K. P. R.
AU  - ALIOUCHE , ABDELKRIM 
AU  - BABU, G. RAVI
TI  - RELATED FIXED POINT THEOREMS IN FUZZY METRIC SPACES
JO  - Journal of nonlinear sciences and its applications
PY  - 2008
SP  - 194
EP  - 202
VL  - 1
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.001.03.08/
DO  - 10.22436/jnsa.001.03.08
LA  - en
ID  - JNSA_2008_1_3_a7
ER  - 
%0 Journal Article
%A RAO, K. P. R.
%A ALIOUCHE , ABDELKRIM 
%A BABU, G. RAVI
%T RELATED FIXED POINT THEOREMS IN FUZZY METRIC SPACES
%J Journal of nonlinear sciences and its applications
%D 2008
%P 194-202
%V 1
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.001.03.08/
%R 10.22436/jnsa.001.03.08
%G en
%F JNSA_2008_1_3_a7
RAO, K. P. R.; ALIOUCHE , ABDELKRIM ; BABU, G. RAVI. RELATED FIXED POINT THEOREMS IN FUZZY METRIC SPACES. Journal of nonlinear sciences and its applications, Tome 1 (2008) no. 3, p. 194-202. doi : 10.22436/jnsa.001.03.08. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.001.03.08/

[1] Aliouche, A.; B. Fisher Fixed point theorems for mappings satisfying implicit relation on two complete and compact metric spaces, Applied Mathematics and Mechanics., Volume 27 (9) (2006), pp. 1217-1222 | DOI | Zbl

[2] Cho, Y. J. Fixed points in fuzzy metric spaces, J. Fuzzy. Math., Volume 5 (4) (1997), pp. 949-962

[3] Fisher, B. Fixed point on two metric spaces, Glasnik Mat., Volume 16 (36) (1981), pp. 333-337

[4] George, A.; P. Veeramani On some result in fuzzy metric space, Fuzzy Sets Syst., Volume 64 (1994), pp. 395-399

[5] Grabiec, M. Fixed points in fuzzy metric spaces , Fuzzy Sets Syst., Volume 27 (1988), pp. 385-389 | DOI

[6] Kramosil, I.; J. Michalek Fuzzy metric and statistical metric spaces, Kybernetica, Volume 11 (1975), pp. 326-334

[7] V. Popa Some fixed point theorems for compatible mappings satisfying an implicit relation, Demonstratio Math., Volume 32 (1999), pp. 157-163

[8] López, J. Rodríguez; Ramaguera, S. The Hausdorff fuzzy metric on compact sets, Fuzzy Sets Sys., Volume 147 (2004), pp. 273-283 | DOI

[9] Schweizer, B.; Sklar, A. Statistical metric spaces, Pacific J. Math., Volume 10 (1960), pp. 313-334

[10] M.Telci Fixed points on two complete and compact metric spaces, Applied Mathematics and Mechanics, Volume 22 (5) (2001), pp. 564-568 | DOI

[11] L. A. Zadeh Fuzzy sets, Inform and Control., Volume 8 (1965), pp. 338-353

Cité par Sources :