A CONTRACTION THEOREM IN MENGER PROBABILISTIC METRIC SPACES
Journal of nonlinear sciences and its applications, Tome 1 (2008) no. 3, p. 189-193.

Voir la notice de l'article provenant de la source International Scientific Research Publications

In this paper, we consider complete menger probabilistic quasi- metric space and prove a common fixed point theorem for commuting maps in this space.
DOI : 10.22436/jnsa.001.03.07
Classification : 54E70, 54H25
Keywords: Probabilistic metric spaces, menger space, fixed point theorem, commuting maps, triangle norm.

SHAKERI, S. 1

1 Department of Mathematics Islamic Azad University-Ayatollah Amoly Branch Amol P. O. Box 678, Amol, Iran.
@article{JNSA_2008_1_3_a6,
     author = {SHAKERI, S.},
     title = {A {CONTRACTION} {THEOREM} {IN} {MENGER} {PROBABILISTIC} {METRIC} {SPACES}},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {189-193},
     publisher = {mathdoc},
     volume = {1},
     number = {3},
     year = {2008},
     doi = {10.22436/jnsa.001.03.07},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.001.03.07/}
}
TY  - JOUR
AU  - SHAKERI, S.
TI  - A CONTRACTION THEOREM IN MENGER PROBABILISTIC METRIC SPACES
JO  - Journal of nonlinear sciences and its applications
PY  - 2008
SP  - 189
EP  - 193
VL  - 1
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.001.03.07/
DO  - 10.22436/jnsa.001.03.07
LA  - en
ID  - JNSA_2008_1_3_a6
ER  - 
%0 Journal Article
%A SHAKERI, S.
%T A CONTRACTION THEOREM IN MENGER PROBABILISTIC METRIC SPACES
%J Journal of nonlinear sciences and its applications
%D 2008
%P 189-193
%V 1
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.001.03.07/
%R 10.22436/jnsa.001.03.07
%G en
%F JNSA_2008_1_3_a6
SHAKERI, S. A CONTRACTION THEOREM IN MENGER PROBABILISTIC METRIC SPACES. Journal of nonlinear sciences and its applications, Tome 1 (2008) no. 3, p. 189-193. doi : 10.22436/jnsa.001.03.07. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.001.03.07/

[1] Chang, S. S.; Cho, Y. J.; S. M. Kang Nonlinear Operator Theory in Probabilistic Metric Spaces, Nova Science Publishers, Inc., New York, 2001

[2] Hadžić, O.; Pap, E. Fixed Point Theory in PM Spaces, Kluwer Academic Publishers, Dordrecht, 2001

[3] Miheţ, D.; V. Radu On the stability of the additive Cauchy functional equation in random normed spaces, J. Math. Anal. Appl., Volume 343 (2008), pp. 567-572 | DOI

[4] Schweizer, B.; A. Sklar Probabilistic Metric Spaces, Elsevier, North Holand, New York, 1983

Cité par Sources :