Voir la notice de l'article provenant de la source International Scientific Research Publications
SHAKERI, S. 1
@article{JNSA_2008_1_3_a6, author = {SHAKERI, S.}, title = {A {CONTRACTION} {THEOREM} {IN} {MENGER} {PROBABILISTIC} {METRIC} {SPACES}}, journal = {Journal of nonlinear sciences and its applications}, pages = {189-193}, publisher = {mathdoc}, volume = {1}, number = {3}, year = {2008}, doi = {10.22436/jnsa.001.03.07}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.001.03.07/} }
TY - JOUR AU - SHAKERI, S. TI - A CONTRACTION THEOREM IN MENGER PROBABILISTIC METRIC SPACES JO - Journal of nonlinear sciences and its applications PY - 2008 SP - 189 EP - 193 VL - 1 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.001.03.07/ DO - 10.22436/jnsa.001.03.07 LA - en ID - JNSA_2008_1_3_a6 ER -
%0 Journal Article %A SHAKERI, S. %T A CONTRACTION THEOREM IN MENGER PROBABILISTIC METRIC SPACES %J Journal of nonlinear sciences and its applications %D 2008 %P 189-193 %V 1 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.001.03.07/ %R 10.22436/jnsa.001.03.07 %G en %F JNSA_2008_1_3_a6
SHAKERI, S. A CONTRACTION THEOREM IN MENGER PROBABILISTIC METRIC SPACES. Journal of nonlinear sciences and its applications, Tome 1 (2008) no. 3, p. 189-193. doi : 10.22436/jnsa.001.03.07. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.001.03.07/
[1] Nonlinear Operator Theory in Probabilistic Metric Spaces, Nova Science Publishers, Inc., New York, 2001
[2] Fixed Point Theory in PM Spaces, Kluwer Academic Publishers, Dordrecht, 2001
[3] On the stability of the additive Cauchy functional equation in random normed spaces, J. Math. Anal. Appl., Volume 343 (2008), pp. 567-572 | DOI
[4] Probabilistic Metric Spaces, Elsevier, North Holand, New York, 1983
Cité par Sources :