CONVERGENCE OF NEW MODIFIED TRIGONOMETRIC SUMS IN THE METRIC SPACE L
Journal of nonlinear sciences and its applications, Tome 1 (2008) no. 3, p. 179-188.

Voir la notice de l'article provenant de la source International Scientific Research Publications

We introduce here new modified cosine and sine sums as $\frac{a_0}{ 2} + \sum^n_{ k=1} \sum^n_{ j=k} \triangle(a_j \cos jx)$ and $ \sum^n_{ k=1} \sum^n_{ j=k} \triangle(a_j \sin jx)$ and study their integrability and $L^1$-convergence. The $L^1$-convergence of cosine and sine series have been obtained as corollary. In this paper, we have been able to remove the necessary and sufficient condition $a_k \log k = o(1)$ as $k \rightarrow\infty$ for the $L^1$-convergence of cosine and sine series.
DOI : 10.22436/jnsa.001.03.06
Classification : 42A20, 42A32
Keywords: \(L^1\)-convergence, Dirichlet kernel, Fejer kernel, monotone sequence.

KAUR , JATINDERDEEP 1 ; BHATIA, S.S. 1

1 School of Mathematics & Computer Applications, Thapar University Patiala(Pb.)-147004, INDIA.
@article{JNSA_2008_1_3_a5,
     author = {KAUR  , JATINDERDEEP and BHATIA,  S.S.},
     title = {CONVERGENCE {OF} {NEW} {MODIFIED} {TRIGONOMETRIC} {SUMS} {IN} {THE} {METRIC} {SPACE} {L}},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {179-188},
     publisher = {mathdoc},
     volume = {1},
     number = {3},
     year = {2008},
     doi = {10.22436/jnsa.001.03.06},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.001.03.06/}
}
TY  - JOUR
AU  - KAUR  , JATINDERDEEP
AU  - BHATIA,  S.S.
TI  - CONVERGENCE OF NEW MODIFIED TRIGONOMETRIC SUMS IN THE METRIC SPACE L
JO  - Journal of nonlinear sciences and its applications
PY  - 2008
SP  - 179
EP  - 188
VL  - 1
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.001.03.06/
DO  - 10.22436/jnsa.001.03.06
LA  - en
ID  - JNSA_2008_1_3_a5
ER  - 
%0 Journal Article
%A KAUR  , JATINDERDEEP
%A BHATIA,  S.S.
%T CONVERGENCE OF NEW MODIFIED TRIGONOMETRIC SUMS IN THE METRIC SPACE L
%J Journal of nonlinear sciences and its applications
%D 2008
%P 179-188
%V 1
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.001.03.06/
%R 10.22436/jnsa.001.03.06
%G en
%F JNSA_2008_1_3_a5
KAUR  , JATINDERDEEP; BHATIA,  S.S. CONVERGENCE OF NEW MODIFIED TRIGONOMETRIC SUMS IN THE METRIC SPACE L. Journal of nonlinear sciences and its applications, Tome 1 (2008) no. 3, p. 179-188. doi : 10.22436/jnsa.001.03.06. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.001.03.06/

[1] Bary, N. K. A treatise on trigonometric series, Vol II, Pergamon Press, London, 1964 | Zbl

[2] Kolmogorov, A. N. Sur l'ordere de grandeur des coefficients de la series de Fourier-Lebesque, Bull. Acad. Pol. Sci. Ser. Sci. Math. Astronom. Phys. (1923), pp. 83-86

[3] Sheng, S. The extension of the theorems of C.V. Stanojević and V.B. Stanojević , Proc. Amer. Math. Soc., Volume 110 (1990), pp. 895-904 | DOI | Zbl

[4] Sidon, S. Hinreichende Bedingungen für den Fourier-Charakter einer trigonometrischen Reihe, J. London Math Soc., Volume 14 (1939), pp. 158-160 | Zbl | DOI

[5] Teljakovskĭi, S. A. A sufficient condition of Sidon for the integrability of trigonometric series, Mat. Zametki, Volume 14(3) (1973), pp. 317-328

Cité par Sources :