Voir la notice de l'article provenant de la source International Scientific Research Publications
$ \begin{cases} x_{n+1} = \alpha_nf(x_n) + (1 - \alpha_n)((1 - \delta)x_n + \delta y_n)\\ y_n = P(\beta_nx_n + (1 - \beta_n)Tx_n),\quad n \geq 0, \end{cases} $ |
HE, ZHENHUA 1 ; CHEN , CAN  1 ; GU, FENG 2
@article{JNSA_2008_1_3_a4, author = {HE, ZHENHUA and CHEN , CAN and GU, FENG}, title = {VISCOSITY {APPROXIMATION} {METHOD} {FOR} {NONEXPANSIVE} {NONSELF-MAPPING} {AND} {VARIATIONAL} {INEQUALITY}}, journal = {Journal of nonlinear sciences and its applications}, pages = {169-178}, publisher = {mathdoc}, volume = {1}, number = {3}, year = {2008}, doi = {10.22436/jnsa.001.03.05}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.001.03.05/} }
TY - JOUR AU - HE, ZHENHUA AU - CHEN , CAN AU - GU, FENG TI - VISCOSITY APPROXIMATION METHOD FOR NONEXPANSIVE NONSELF-MAPPING AND VARIATIONAL INEQUALITY JO - Journal of nonlinear sciences and its applications PY - 2008 SP - 169 EP - 178 VL - 1 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.001.03.05/ DO - 10.22436/jnsa.001.03.05 LA - en ID - JNSA_2008_1_3_a4 ER -
%0 Journal Article %A HE, ZHENHUA %A CHEN , CAN %A GU, FENG %T VISCOSITY APPROXIMATION METHOD FOR NONEXPANSIVE NONSELF-MAPPING AND VARIATIONAL INEQUALITY %J Journal of nonlinear sciences and its applications %D 2008 %P 169-178 %V 1 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.001.03.05/ %R 10.22436/jnsa.001.03.05 %G en %F JNSA_2008_1_3_a4
HE, ZHENHUA; CHEN , CAN ; GU, FENG. VISCOSITY APPROXIMATION METHOD FOR NONEXPANSIVE NONSELF-MAPPING AND VARIATIONAL INEQUALITY. Journal of nonlinear sciences and its applications, Tome 1 (2008) no. 3, p. 169-178. doi : 10.22436/jnsa.001.03.05. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.001.03.05/
[1] Some problems and results in the study of nonlinear analysis, Nonlinear Anal., Volume 30 (1997), pp. 4197-4208 | DOI
[2] Viscosity approximation methods for nonexpansive nonself-mappings, J. Math. Anal. Apple., Volume 321 (2006), pp. 316-326 | DOI
[3] Strong convergence theorems for infinite families of nonexpansive mappings in general Banach spaces,, Fixed Point Theory and Applications, Volume 1 (2005), pp. 103-123 | Zbl | DOI
[4] Nonlinear Functional Analysis, Yokohama Publishers, Yokohama, 2000
[5] On Reich' s strong convergence for resolvents of accretive operators, J. Math. Anal. Appl. , Volume 104 (1984), pp. 546-553 | DOI | Zbl
[6] Viscosity approximation methods for nonexpansive mappings , J. Math. Anal. Apple., Volume 298 (2004), pp. 279-291 | DOI
[7] Approximating curves of nonexpansive nonself-mappings in Banach spaces , in: Mathematical Analysis, C.R.Acad. Sci. Paris, Volume 325 (1997), pp. 151-156 | Zbl | DOI
[8] Iterative algorithms for nonlinear operators, J. London. Math. Soc., Volume 2 (2002), pp. 240-256 | DOI
[9] Strong convergence theorems for a common zero of a finite family of m-accretive mappings, Nonlinear Anal., Volume 66 (2007), pp. 1161-1169 | Zbl | DOI
Cité par Sources :