WHEN IS A QUASI-P-PROJECTIVE MODULE DISCRETE
Journal of nonlinear sciences and its applications, Tome 1 (2008) no. 2, p. 118-120.

Voir la notice de l'article provenant de la source International Scientific Research Publications

It is well-known that every quasi-projective module has $D_2$-condition. In this note it is shown that for a quasi-p-projective module M which is self- generator, duo, then M is discrete.
DOI : 10.22436/jnsa.001.02.07
Classification : 16D40, 16D60, 16D90
Keywords: Supplemented Module, H-Supplemented Module, Lifting Module.

TALEBI , Y.  1 ; GORJI, I. KHALILI 2

1 Department of Mathematics, University of Mazandaran, Babolsar, Iran.
2
@article{JNSA_2008_1_2_a6,
     author = {TALEBI , Y.  and GORJI, I. KHALILI},
     title = {WHEN {IS} {A} {QUASI-P-PROJECTIVE} {MODULE} {DISCRETE}},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {118-120},
     publisher = {mathdoc},
     volume = {1},
     number = {2},
     year = {2008},
     doi = {10.22436/jnsa.001.02.07},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.001.02.07/}
}
TY  - JOUR
AU  - TALEBI , Y. 
AU  - GORJI, I. KHALILI
TI  - WHEN IS A QUASI-P-PROJECTIVE MODULE DISCRETE
JO  - Journal of nonlinear sciences and its applications
PY  - 2008
SP  - 118
EP  - 120
VL  - 1
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.001.02.07/
DO  - 10.22436/jnsa.001.02.07
LA  - en
ID  - JNSA_2008_1_2_a6
ER  - 
%0 Journal Article
%A TALEBI , Y. 
%A GORJI, I. KHALILI
%T WHEN IS A QUASI-P-PROJECTIVE MODULE DISCRETE
%J Journal of nonlinear sciences and its applications
%D 2008
%P 118-120
%V 1
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.001.02.07/
%R 10.22436/jnsa.001.02.07
%G en
%F JNSA_2008_1_2_a6
TALEBI , Y. ; GORJI, I. KHALILI. WHEN IS A QUASI-P-PROJECTIVE MODULE DISCRETE. Journal of nonlinear sciences and its applications, Tome 1 (2008) no. 2, p. 118-120. doi : 10.22436/jnsa.001.02.07. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.001.02.07/

[1] Birkenmeier, G. F.; Muller, B. J.; Rizvi, S. T. Modules in which Every Fully Invariant submodule is Essential in a Fully Invariant Direct Summand, Comm. Algebra, Volume 30 (2002), pp. 1833-1852

[2] Chotchaisthit, S. When is a Quasi-p-injective Module Continuous? , Southest Asian Bulletin of Mathematics , Volume 26 (2002), pp. 391-394 | Zbl | DOI

[3] Mohamed, S. M.; Muller, B. J. Continuous and Discrete Modules, London Math, Soc, Lecture Notes Series 147, University Press, Cambridge, 1990

[4] Wisbauer, R. Foundations of Module and Ring Theory , Gordon and Breach, Philadelphia, 1991

Cité par Sources :