BLOW-UP TIME OF SOME NONLINEAR WAVE EQUATIONS
Journal of nonlinear sciences and its applications, Tome 1 (2008) no. 2, p. 91-101.

Voir la notice de l'article provenant de la source International Scientific Research Publications

In this paper, we consider the following initial-boundary value problem
$ \begin{cases} u_{tt}(x, t) = \varepsilon Lu(x, t) + b(t)f(u(x, t)) ,\,\,\,\,\, \texttt{in} \qquad\Omega\times (0, T),\\ u(x, t) = 0 ,\,\,\,\,\, \texttt{on} \qquad\partial\Omega\times (0, T),\\ u(x, 0) = 0 ,\,\,\,\,\, \texttt{in}\qquad \Omega,\\ u_t(x, 0) = 0 ,\,\,\,\,\, \texttt{in}\qquad \Omega, \end{cases} $
where $\varepsilon$ is a positive parameter, $b \in C^1(\mathbb{R}_+), b(t) > 0, b' (t)\geq 0, t \in \mathbb{R}_+, f(s) $ is a positive, increasing and convex function for nonnegative values of s. Under some assumptions, we show that, if $\varepsilon$ is small enough, then the solution u of the above problem blows up in a finite time, and its blow-up time tends to that of the solution of the following differential equation
$ \begin{cases} \alpha' (t) = b(t)f(\alpha(t)),\quad t > 0,\\ \alpha(0) = 0, \alpha'(0) = 0. \end{cases} $
Finally, we give some numerical results to illustrate our analysis.
DOI : 10.22436/jnsa.001.02.05
Classification : 35B40, 35B50, 35K60
Keywords: Nonlinear wave equation, blow-up, convergence, numerical blow-up time.

BONI, THEODORE K. 1 ; NABONGO, DIABATE 2 ; SERY, ROGER B. 1

1 Institut National Polytechnique Houphouet-Boigny de Yamoussoukro, BP 1093 Yamoussoukro, (Cote d'Ivoire).
2 Universite d'Abobo-Adjame, UFR-SFA, Departement de Mathematiques et Informatiques, 16 BP 372 Abidjan 16, (Cote d'Ivoire)
@article{JNSA_2008_1_2_a4,
     author = {BONI, THEODORE K. and NABONGO, DIABATE and SERY, ROGER  B.},
     title = {BLOW-UP {TIME} {OF} {SOME} {NONLINEAR} {WAVE} {EQUATIONS}},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {91-101},
     publisher = {mathdoc},
     volume = {1},
     number = {2},
     year = {2008},
     doi = {10.22436/jnsa.001.02.05},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.001.02.05/}
}
TY  - JOUR
AU  - BONI, THEODORE K.
AU  - NABONGO, DIABATE
AU  - SERY, ROGER  B.
TI  - BLOW-UP TIME OF SOME NONLINEAR WAVE EQUATIONS
JO  - Journal of nonlinear sciences and its applications
PY  - 2008
SP  - 91
EP  - 101
VL  - 1
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.001.02.05/
DO  - 10.22436/jnsa.001.02.05
LA  - en
ID  - JNSA_2008_1_2_a4
ER  - 
%0 Journal Article
%A BONI, THEODORE K.
%A NABONGO, DIABATE
%A SERY, ROGER  B.
%T BLOW-UP TIME OF SOME NONLINEAR WAVE EQUATIONS
%J Journal of nonlinear sciences and its applications
%D 2008
%P 91-101
%V 1
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.001.02.05/
%R 10.22436/jnsa.001.02.05
%G en
%F JNSA_2008_1_2_a4
BONI, THEODORE K.; NABONGO, DIABATE; SERY, ROGER  B. BLOW-UP TIME OF SOME NONLINEAR WAVE EQUATIONS. Journal of nonlinear sciences and its applications, Tome 1 (2008) no. 2, p. 91-101. doi : 10.22436/jnsa.001.02.05. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.001.02.05/

[1] Abia, L. M.; López-Marcos, J. C.; Martínez, J. On the blow-up time convergence of semidiscretizations of reaction-diffusion equations, Appl. Numer. Math., Volume 26 (1998), pp. 399-414 | Zbl | DOI

[2] T. K. Boni Extinction for discretizations of some semilinear parabolic equations, C.R.A.S, Serie I, Volume 333 (2001), pp. 795-800 | DOI | Zbl

[3] T. K. Boni On blow-up and asymptotic behavior of solutions to a nonlinear parabolic equation of second order with nonlinear boundary condition, Comment. Math. Univ. Comenian, Volume 40 (1999), pp. 457-475

[4] Brezis, H.; Cazenave, T.; Martel, Y.; Ramiandrisoa, A. Blow-up for \(u_t = u_{xx} + g(u)\) revisited, Adv. Diff. Eq., Volume 1 (1996), pp. 73-90

[5] K. Deng Nonexistence of global solutions of a nonlinear hyperbolic system, Trans. Am. Math. Soc., Volume 349 (1997), pp. 1685-1696

[6] Friedman, A.; Lacey, A. A. he blow-up time for solutions of nonlinear heat equations with small diffusion, SIAM J. Math. Anal., Volume 18 (1987), pp. 711-721 | DOI

[7] R. T. Glassey Blow-up Theorems for nonlinear wave equations , Math. Z., Volume 132 (1973), pp. 183-203 | DOI

[8] Georgiev, V.; G. Todorova Existence of a solution of the wave equation with nonlinear Dampiing and Source Trems, J. of Diff. Equat., Volume 109 (1994), pp. 295-308 | DOI

[9] Guowang, G.; W. Shubin Existence and nonexistence of global solutions for the generalized IMBq equation, Nonl. Anal. TMA, Volume 36 (1999), pp. 961-980 | Zbl | DOI

[10] Kaplan, S. On the growth of solutions of quasi-linear parabolic equations , Comm. Pure Appl. Math., Volume 16 (1963), pp. 305-330 | DOI

[11] Levine, H. A. Instability and nonexistence of global solutions to nonlinear wave equations of the form \(\rho u_{tt} = -Av + F(u)\),, Trans. Am. Math. Soc., Volume 192 (1974), pp. 1-21

[12] H. A. Levine Some additional remarks on the nonexistence of global solutions to nonlinear wave equations, SIAM J. Math. Anal., Volume 5 (1974), pp. 138-146 | Zbl | DOI

[13] Maccamy, R. C.; V. J. Mizel Existence and nonexistence in the lare of solutions of quasilinear wave equations, Arch. Rational Meth. Anal., Volume 25 (1967), pp. 299-320 | DOI

[14] T. Nakagawa Blowing up on the finite difference solution to \(u_t = u_{xx} + u^2\), Appl. Math. Optim. (1976), pp. 337-350

[15] N'gohisse, F. K.; T. K. Boni Quenching time of some nonlinear wave equations, Arch. Math. (Brno), Volume 45 (2009), pp. 115-124 | Zbl

[16] Protter, M. H.; H. F. Weinberger Maximum principles in differential equations, Prentice Hall, Englewood Cliffs, NJ, 1967

[17] M. Reed Abstract nonlinear wave equations, Lecture notes in Mathematics 507, Springer- Verlag Berlin, New-York, 1976

[18] D. H. Sattinger On global solution of nonlinear hyperbolic equations, Arch. Rational Mech. Anal., Volume 30 (1968), pp. 148-172 | DOI

[19] Sang, A.; R. Park Remarks on quasilinear hyperbolic equations with dynamic boundary conditions, Math. Narchr., Volume 198 (1999), pp. 169-178 | DOI

[20] W. Walter Differentiaund Integral-Ungleichungen, Springer, Berlin, 1954

Cité par Sources :