Voir la notice de l'article provenant de la source International Scientific Research Publications
$ \begin{cases} u_{tt}(x, t) = \varepsilon Lu(x, t) + b(t)f(u(x, t)) ,\,\,\,\,\, \texttt{in} \qquad\Omega\times (0, T),\\ u(x, t) = 0 ,\,\,\,\,\, \texttt{on} \qquad\partial\Omega\times (0, T),\\ u(x, 0) = 0 ,\,\,\,\,\, \texttt{in}\qquad \Omega,\\ u_t(x, 0) = 0 ,\,\,\,\,\, \texttt{in}\qquad \Omega, \end{cases} $ |
$ \begin{cases} \alpha' (t) = b(t)f(\alpha(t)),\quad t > 0,\\ \alpha(0) = 0, \alpha'(0) = 0. \end{cases} $ |
BONI, THEODORE K. 1 ; NABONGO, DIABATE 2 ; SERY, ROGER B. 1
@article{JNSA_2008_1_2_a4, author = {BONI, THEODORE K. and NABONGO, DIABATE and SERY, ROGER B.}, title = {BLOW-UP {TIME} {OF} {SOME} {NONLINEAR} {WAVE} {EQUATIONS}}, journal = {Journal of nonlinear sciences and its applications}, pages = {91-101}, publisher = {mathdoc}, volume = {1}, number = {2}, year = {2008}, doi = {10.22436/jnsa.001.02.05}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.001.02.05/} }
TY - JOUR AU - BONI, THEODORE K. AU - NABONGO, DIABATE AU - SERY, ROGER B. TI - BLOW-UP TIME OF SOME NONLINEAR WAVE EQUATIONS JO - Journal of nonlinear sciences and its applications PY - 2008 SP - 91 EP - 101 VL - 1 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.001.02.05/ DO - 10.22436/jnsa.001.02.05 LA - en ID - JNSA_2008_1_2_a4 ER -
%0 Journal Article %A BONI, THEODORE K. %A NABONGO, DIABATE %A SERY, ROGER B. %T BLOW-UP TIME OF SOME NONLINEAR WAVE EQUATIONS %J Journal of nonlinear sciences and its applications %D 2008 %P 91-101 %V 1 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.001.02.05/ %R 10.22436/jnsa.001.02.05 %G en %F JNSA_2008_1_2_a4
BONI, THEODORE K.; NABONGO, DIABATE; SERY, ROGER B. BLOW-UP TIME OF SOME NONLINEAR WAVE EQUATIONS. Journal of nonlinear sciences and its applications, Tome 1 (2008) no. 2, p. 91-101. doi : 10.22436/jnsa.001.02.05. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.001.02.05/
[1] On the blow-up time convergence of semidiscretizations of reaction-diffusion equations, Appl. Numer. Math., Volume 26 (1998), pp. 399-414 | Zbl | DOI
[2] Extinction for discretizations of some semilinear parabolic equations, C.R.A.S, Serie I, Volume 333 (2001), pp. 795-800 | DOI | Zbl
[3] On blow-up and asymptotic behavior of solutions to a nonlinear parabolic equation of second order with nonlinear boundary condition, Comment. Math. Univ. Comenian, Volume 40 (1999), pp. 457-475
[4] Blow-up for \(u_t = u_{xx} + g(u)\) revisited, Adv. Diff. Eq., Volume 1 (1996), pp. 73-90
[5] Nonexistence of global solutions of a nonlinear hyperbolic system, Trans. Am. Math. Soc., Volume 349 (1997), pp. 1685-1696
[6] he blow-up time for solutions of nonlinear heat equations with small diffusion, SIAM J. Math. Anal., Volume 18 (1987), pp. 711-721 | DOI
[7] Blow-up Theorems for nonlinear wave equations , Math. Z., Volume 132 (1973), pp. 183-203 | DOI
[8] Existence of a solution of the wave equation with nonlinear Dampiing and Source Trems, J. of Diff. Equat., Volume 109 (1994), pp. 295-308 | DOI
[9] Existence and nonexistence of global solutions for the generalized IMBq equation, Nonl. Anal. TMA, Volume 36 (1999), pp. 961-980 | Zbl | DOI
[10] On the growth of solutions of quasi-linear parabolic equations , Comm. Pure Appl. Math., Volume 16 (1963), pp. 305-330 | DOI
[11] Instability and nonexistence of global solutions to nonlinear wave equations of the form \(\rho u_{tt} = -Av + F(u)\),, Trans. Am. Math. Soc., Volume 192 (1974), pp. 1-21
[12] Some additional remarks on the nonexistence of global solutions to nonlinear wave equations, SIAM J. Math. Anal., Volume 5 (1974), pp. 138-146 | Zbl | DOI
[13] Existence and nonexistence in the lare of solutions of quasilinear wave equations, Arch. Rational Meth. Anal., Volume 25 (1967), pp. 299-320 | DOI
[14] Blowing up on the finite difference solution to \(u_t = u_{xx} + u^2\), Appl. Math. Optim. (1976), pp. 337-350
[15] Quenching time of some nonlinear wave equations, Arch. Math. (Brno), Volume 45 (2009), pp. 115-124 | Zbl
[16] Maximum principles in differential equations, Prentice Hall, Englewood Cliffs, NJ, 1967
[17] Abstract nonlinear wave equations, Lecture notes in Mathematics 507, Springer- Verlag Berlin, New-York, 1976
[18] On global solution of nonlinear hyperbolic equations, Arch. Rational Mech. Anal., Volume 30 (1968), pp. 148-172 | DOI
[19] Remarks on quasilinear hyperbolic equations with dynamic boundary conditions, Math. Narchr., Volume 198 (1999), pp. 169-178 | DOI
[20] Differentiaund Integral-Ungleichungen, Springer, Berlin, 1954
Cité par Sources :