A NOTE ON $D_{11}$-MODULES
Journal of nonlinear sciences and its applications, Tome 1 (2008) no. 2, p. 87-90.

Voir la notice de l'article provenant de la source International Scientific Research Publications

Let $M$ be a right R-module. $M$ is called $D_{11}$-module if every submodule of $M$ has a supplement which is a direct summand of $M$ and $M$ is called a $D^+_{11}$- module if every direct summand of $M$ is a $D_{11}$- module. In this paper we study some properties of $D_{11}$ modules.
DOI : 10.22436/jnsa.001.02.04
Classification : 16D90, 16D99
Keywords: \(D_{11}\)- module, \(D^+_{11}\)- module

TALEBI , Y.  1 ; VEYLAKI, M. 1

1 Department of Mathematics, University of Mazandaran, Babolsar, Iran.
@article{JNSA_2008_1_2_a3,
     author = {TALEBI , Y.  and VEYLAKI,  M.},
     title = {A {NOTE} {ON} {\(D_{11}\)-MODULES}},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {87-90},
     publisher = {mathdoc},
     volume = {1},
     number = {2},
     year = {2008},
     doi = {10.22436/jnsa.001.02.04},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.001.02.04/}
}
TY  - JOUR
AU  - TALEBI , Y. 
AU  - VEYLAKI,  M.
TI  - A NOTE ON \(D_{11}\)-MODULES
JO  - Journal of nonlinear sciences and its applications
PY  - 2008
SP  - 87
EP  - 90
VL  - 1
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.001.02.04/
DO  - 10.22436/jnsa.001.02.04
LA  - en
ID  - JNSA_2008_1_2_a3
ER  - 
%0 Journal Article
%A TALEBI , Y. 
%A VEYLAKI,  M.
%T A NOTE ON \(D_{11}\)-MODULES
%J Journal of nonlinear sciences and its applications
%D 2008
%P 87-90
%V 1
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.001.02.04/
%R 10.22436/jnsa.001.02.04
%G en
%F JNSA_2008_1_2_a3
TALEBI , Y. ; VEYLAKI,  M. A NOTE ON \(D_{11}\)-MODULES. Journal of nonlinear sciences and its applications, Tome 1 (2008) no. 2, p. 87-90. doi : 10.22436/jnsa.001.02.04. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.001.02.04/

[1] Anderson, F. W.; Fuller, K. R. Rings and categories of modules, Berlin, Springer- verlag, New York, 1992

[2] Birkenmeier, G. F.; A. Tercan When some complement of a submodule is a summand , Comm. Algebra , Volume 35 (2007), pp. 597-611 | DOI

[3] Ozcan, A. Harmanic Duo modules , Glasgow Math. J., Volume 48(3) (2006), pp. 535-545

[4] Talebi, Y.; Vanaja, N. The Torsion theory cogenerated by M-small modules, Comm.Algebra , Volume 30(3) (2002), pp. 1449-1460 | DOI | Zbl

[5] Y. Wang A Note on modules with (\(D^+_{ 11}\)), Southeast Asian Bulletin of Mathematics , Volume 28 (2004), pp. 999-1002

[6] Wisbauer, R. Foundations of Module and Ring Theory, Gordon and Breach, Philadelphia, 1991

Cité par Sources :