Voir la notice de l'article provenant de la source International Scientific Research Publications
TALEBI , Y.  1 ; VEYLAKI, M. 1
@article{JNSA_2008_1_2_a3, author = {TALEBI , Y. and VEYLAKI, M.}, title = {A {NOTE} {ON} {\(D_{11}\)-MODULES}}, journal = {Journal of nonlinear sciences and its applications}, pages = {87-90}, publisher = {mathdoc}, volume = {1}, number = {2}, year = {2008}, doi = {10.22436/jnsa.001.02.04}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.001.02.04/} }
TY - JOUR AU - TALEBI , Y. AU - VEYLAKI, M. TI - A NOTE ON \(D_{11}\)-MODULES JO - Journal of nonlinear sciences and its applications PY - 2008 SP - 87 EP - 90 VL - 1 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.001.02.04/ DO - 10.22436/jnsa.001.02.04 LA - en ID - JNSA_2008_1_2_a3 ER -
TALEBI , Y. ; VEYLAKI, M. A NOTE ON \(D_{11}\)-MODULES. Journal of nonlinear sciences and its applications, Tome 1 (2008) no. 2, p. 87-90. doi : 10.22436/jnsa.001.02.04. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.001.02.04/
[1] Rings and categories of modules, Berlin, Springer- verlag, New York, 1992
[2] When some complement of a submodule is a summand , Comm. Algebra , Volume 35 (2007), pp. 597-611 | DOI
[3] Harmanic Duo modules , Glasgow Math. J., Volume 48(3) (2006), pp. 535-545
[4] The Torsion theory cogenerated by M-small modules, Comm.Algebra , Volume 30(3) (2002), pp. 1449-1460 | DOI | Zbl
[5] A Note on modules with (\(D^+_{ 11}\)), Southeast Asian Bulletin of Mathematics , Volume 28 (2004), pp. 999-1002
[6] Foundations of Module and Ring Theory, Gordon and Breach, Philadelphia, 1991
Cité par Sources :