IMPULSIVE STABILIZATION OF CELLULAR NEURAL NETWORKS WITH TIME DELAY VIA LYAPUNOV FUNCTIONALS
Journal of nonlinear sciences and its applications, Tome 1 (2008) no. 2, p. 72-86.

Voir la notice de l'article provenant de la source International Scientific Research Publications

This paper investigates the problem of global exponential stability for a class of impulsive cellular neural networks with time delay. By employing Lyapunov functionals, some sufficient conditions for exponential stability are established. Our results show that unstable cellular neural networks with time delay may be stabilized by impulses, where the upper bound of the amplitudes of the impulses is given. Numerical simulations on two examples are given to illustrate our results.
DOI : 10.22436/jnsa.001.02.03
Classification : 34d20, 44B20, 46C05.
Keywords: Impulsive cellular neural networks, global exponential stability, stabilization, time delay

WANG , QING  1 ; LIU, XINZHI 2

1 Department of Computer Science, Mathematics, and Engineering, Shepherd University, Shepherdstown, WV 25443,USA
2 Department of Applied Mathematics, University of Waterloo, Waterloo, Ontario N2L 3G1
@article{JNSA_2008_1_2_a2,
     author = {WANG , QING  and LIU, XINZHI},
     title = {IMPULSIVE {STABILIZATION} {OF} {CELLULAR} {NEURAL} {NETWORKS} {WITH} {TIME} {DELAY} {VIA} {LYAPUNOV} {FUNCTIONALS}},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {72-86},
     publisher = {mathdoc},
     volume = {1},
     number = {2},
     year = {2008},
     doi = {10.22436/jnsa.001.02.03},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.001.02.03/}
}
TY  - JOUR
AU  - WANG , QING 
AU  - LIU, XINZHI
TI  - IMPULSIVE STABILIZATION OF CELLULAR NEURAL NETWORKS WITH TIME DELAY VIA LYAPUNOV FUNCTIONALS
JO  - Journal of nonlinear sciences and its applications
PY  - 2008
SP  - 72
EP  - 86
VL  - 1
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.001.02.03/
DO  - 10.22436/jnsa.001.02.03
LA  - en
ID  - JNSA_2008_1_2_a2
ER  - 
%0 Journal Article
%A WANG , QING 
%A LIU, XINZHI
%T IMPULSIVE STABILIZATION OF CELLULAR NEURAL NETWORKS WITH TIME DELAY VIA LYAPUNOV FUNCTIONALS
%J Journal of nonlinear sciences and its applications
%D 2008
%P 72-86
%V 1
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.001.02.03/
%R 10.22436/jnsa.001.02.03
%G en
%F JNSA_2008_1_2_a2
WANG , QING ; LIU, XINZHI. IMPULSIVE STABILIZATION OF CELLULAR NEURAL NETWORKS WITH TIME DELAY VIA LYAPUNOV FUNCTIONALS. Journal of nonlinear sciences and its applications, Tome 1 (2008) no. 2, p. 72-86. doi : 10.22436/jnsa.001.02.03. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.001.02.03/

[1] Akca, H.; Alassar, R.; Covachev, V.; Covacheva, Z.; E. Al-Zahrani Continuous-time additive Hopfield-type neural networks with impulses, J. Math. Anal. Appl., Volume 290 (2004), pp. 436-451 | Zbl | DOI

[2] Arik, S.; Tavsanglu, V. On the global asymptotic stability of delayed cellular neural networks, IEEE Trans. Circuits Syst. I, Volume 47 (2000), pp. 571-574 | DOI

[3] Ballinger, G.; X. Liu Existence and uniqueness results for impulsive delay differential equations, Dynamics of Continuous, Discrete and Impulsive Systems, Volume 5 (1999), pp. 579-591

[4] Cao, J.; Liang, J.; J. Lam Exponential stability of high-order bidirectional associative memory neural networks with time delays, Physica D, Volume 199 (2004), pp. 425-436 | DOI

[5] Cao, J.; J. Wang Global Exponential Stability and Periodicity of Recurrent Neural Networks with Time Delays, IEEE Trans Circuits Syst. I, Volume 52 (2005), pp. 920-931 | DOI

[6] Chua, L.; Roska, T. Cellular neural networks with nonlinear and delay-type template elements, Proceeding of 1990 IEEE Int. Workshop Cellular Neural Networks Applications, pp. 12-25 | DOI

[7] Chua, L.; Roska, T. Stability of a class of nonreciprocal cellular neural networks, IEEE Trans. Circuits Syst., Volume 37 (1990), pp. 1520-1527 | DOI

[8] Chua, L.; L. Yang Cellular neural networks: theory, IEEE Trans. Circuits Syst., Volume 35 (1988), pp. 1257-1271 | DOI | Zbl

[9] Civalleri, P.; Gilli, M.; Pandolfi, L. On stability of cellular neural networks with delay, IEEE Trans. Circuits Syst. I, Volume 40 (1993), pp. 157-165 | DOI

[10] K. Gopalsamy Stability of artificial neural networks with impulses, Applied Mathematics and Computation, Volume 154 (2004), pp. 783-813 | DOI

[11] Li, X.; Huang, L.; Wu, J. Further results on the stability of delayed cellular neural networks, IEEE Trans. Circuits Syst. I, Volume 50 (2003), pp. 1239-1242 | DOI

[12] Liu, X.; Q. Wang Exponential Stability of Impulsive Functional Differential Equations via Lyapunov Functionals, Nonlinear Analysis, , to appear

[13] Rong, L. LMI approach for global periodicity of neural networks with time-varying delays, IEEE Trans. Circuits Syst. I, Volume 52 (2005), pp. 1451-1458 | DOI

[14] Roska, T.; Wu, C.; Balsi, M.; L. Chua Stability and dynamics of delay-type general and cellular neural networks, IEEE Trans. Circuits Syst., Volume 39 (1992), pp. 487-490 | DOI

[15] Roska, T.; Wu, C.; L. Chua Stability of Cellular Neural Networks with Dominant Nonlinear and Delay-Type Template, IEEE Trans Circuits Syst. I, Volume 40 (1993), pp. 270-272 | DOI

[16] N. Takahshi A new suffcient condition for complete stability of cellular neural networks with delay, IEEE Trans. Circuits Syst. I, Volume 47 (2000), pp. 793-799 | DOI

[17] Takahashi, N.; L. Chua On the complete stability of non-symmetric cellular neural networks, IEEE Trans. Circuits Syst. I, Volume 45 (1998), pp. 754-758 | DOI

[18] Wang, Q.; X. Liu Exponential stability for impulsive delay differential equations by Razumikhin method, J. Math. Anal. Appl., Volume 309 (2005), pp. 462-473 | DOI

[19] Wang, Q.; X. Liu Global Exponential Stability of Impulsive High Order Hopfield Type Neural Networks with Delays, Proceeding of the DSDIC 4th International Conference on Engineering Applications and Computational Algorithms, Watam Press, 825-830., 2005

[20] Xu, B.; Liu, X.; X. Liao Global asymptotic stability of high-order Hopfield type neural networks with time delays, Computers and Mathematics with Applications, Volume 45 (2003), pp. 1729-1737 | Zbl | DOI

[21] Xu, D.; Yang, Z. Impulsive delay differential inequality and stability of neural networks, J. Math. Anal. Appl., Volume 305 (2005), pp. 107-120 | DOI

Cité par Sources :