Voir la notice de l'article provenant de la source International Scientific Research Publications
WANG , QING  1 ; LIU, XINZHI 2
@article{JNSA_2008_1_2_a2, author = {WANG , QING and LIU, XINZHI}, title = {IMPULSIVE {STABILIZATION} {OF} {CELLULAR} {NEURAL} {NETWORKS} {WITH} {TIME} {DELAY} {VIA} {LYAPUNOV} {FUNCTIONALS}}, journal = {Journal of nonlinear sciences and its applications}, pages = {72-86}, publisher = {mathdoc}, volume = {1}, number = {2}, year = {2008}, doi = {10.22436/jnsa.001.02.03}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.001.02.03/} }
TY - JOUR AU - WANG , QING AU - LIU, XINZHI TI - IMPULSIVE STABILIZATION OF CELLULAR NEURAL NETWORKS WITH TIME DELAY VIA LYAPUNOV FUNCTIONALS JO - Journal of nonlinear sciences and its applications PY - 2008 SP - 72 EP - 86 VL - 1 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.001.02.03/ DO - 10.22436/jnsa.001.02.03 LA - en ID - JNSA_2008_1_2_a2 ER -
%0 Journal Article %A WANG , QING %A LIU, XINZHI %T IMPULSIVE STABILIZATION OF CELLULAR NEURAL NETWORKS WITH TIME DELAY VIA LYAPUNOV FUNCTIONALS %J Journal of nonlinear sciences and its applications %D 2008 %P 72-86 %V 1 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.001.02.03/ %R 10.22436/jnsa.001.02.03 %G en %F JNSA_2008_1_2_a2
WANG , QING ; LIU, XINZHI. IMPULSIVE STABILIZATION OF CELLULAR NEURAL NETWORKS WITH TIME DELAY VIA LYAPUNOV FUNCTIONALS. Journal of nonlinear sciences and its applications, Tome 1 (2008) no. 2, p. 72-86. doi : 10.22436/jnsa.001.02.03. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.001.02.03/
[1] Continuous-time additive Hopfield-type neural networks with impulses, J. Math. Anal. Appl., Volume 290 (2004), pp. 436-451 | Zbl | DOI
[2] On the global asymptotic stability of delayed cellular neural networks, IEEE Trans. Circuits Syst. I, Volume 47 (2000), pp. 571-574 | DOI
[3] Existence and uniqueness results for impulsive delay differential equations, Dynamics of Continuous, Discrete and Impulsive Systems, Volume 5 (1999), pp. 579-591
[4] Exponential stability of high-order bidirectional associative memory neural networks with time delays, Physica D, Volume 199 (2004), pp. 425-436 | DOI
[5] Global Exponential Stability and Periodicity of Recurrent Neural Networks with Time Delays, IEEE Trans Circuits Syst. I, Volume 52 (2005), pp. 920-931 | DOI
[6] Cellular neural networks with nonlinear and delay-type template elements, Proceeding of 1990 IEEE Int. Workshop Cellular Neural Networks Applications, pp. 12-25 | DOI
[7] Stability of a class of nonreciprocal cellular neural networks, IEEE Trans. Circuits Syst., Volume 37 (1990), pp. 1520-1527 | DOI
[8] Cellular neural networks: theory, IEEE Trans. Circuits Syst., Volume 35 (1988), pp. 1257-1271 | DOI | Zbl
[9] On stability of cellular neural networks with delay, IEEE Trans. Circuits Syst. I, Volume 40 (1993), pp. 157-165 | DOI
[10] Stability of artificial neural networks with impulses, Applied Mathematics and Computation, Volume 154 (2004), pp. 783-813 | DOI
[11] Further results on the stability of delayed cellular neural networks, IEEE Trans. Circuits Syst. I, Volume 50 (2003), pp. 1239-1242 | DOI
[12] Exponential Stability of Impulsive Functional Differential Equations via Lyapunov Functionals, Nonlinear Analysis, , to appear
[13] LMI approach for global periodicity of neural networks with time-varying delays, IEEE Trans. Circuits Syst. I, Volume 52 (2005), pp. 1451-1458 | DOI
[14] Stability and dynamics of delay-type general and cellular neural networks, IEEE Trans. Circuits Syst., Volume 39 (1992), pp. 487-490 | DOI
[15] Stability of Cellular Neural Networks with Dominant Nonlinear and Delay-Type Template, IEEE Trans Circuits Syst. I, Volume 40 (1993), pp. 270-272 | DOI
[16] A new suffcient condition for complete stability of cellular neural networks with delay, IEEE Trans. Circuits Syst. I, Volume 47 (2000), pp. 793-799 | DOI
[17] On the complete stability of non-symmetric cellular neural networks, IEEE Trans. Circuits Syst. I, Volume 45 (1998), pp. 754-758 | DOI
[18] Exponential stability for impulsive delay differential equations by Razumikhin method, J. Math. Anal. Appl., Volume 309 (2005), pp. 462-473 | DOI
[19] Global Exponential Stability of Impulsive High Order Hopfield Type Neural Networks with Delays, Proceeding of the DSDIC 4th International Conference on Engineering Applications and Computational Algorithms, Watam Press, 825-830., 2005
[20] Global asymptotic stability of high-order Hopfield type neural networks with time delays, Computers and Mathematics with Applications, Volume 45 (2003), pp. 1729-1737 | Zbl | DOI
[21] Impulsive delay differential inequality and stability of neural networks, J. Math. Anal. Appl., Volume 305 (2005), pp. 107-120 | DOI
Cité par Sources :