AN IMPLICIT METHOD FOR FUZZY PARABOLIC PARTIAL DIFFERENTIAL EQUATIONS
Journal of nonlinear sciences and its applications, Tome 1 (2008) no. 2, p. 61-71.

Voir la notice de l'article provenant de la source International Scientific Research Publications

In this paper, we consider an implicit finite difference method for solving fuzzy partial differential equations (FPDEs). We present stability of this method and solve the parabolic equation with this scheme.
DOI : 10.22436/jnsa.001.02.02
Classification : 65M06, 74S20, 94D05
Keywords: Parabolic boundary value problems, Fuzzy partial difference method, Implicit method.

NEMATI , K.  1 ; MATINFAR, M. 2

1 Islamic Azad University, Nur branch, Nur, Iran.
2 Department of Mathematics, University of Mazandaran, Babolsar, Iran.
@article{JNSA_2008_1_2_a1,
     author = {NEMATI  , K.  and MATINFAR, M.},
     title = {AN {IMPLICIT} {METHOD} {FOR} {FUZZY} {PARABOLIC} {PARTIAL} {DIFFERENTIAL} {EQUATIONS}},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {61-71},
     publisher = {mathdoc},
     volume = {1},
     number = {2},
     year = {2008},
     doi = {10.22436/jnsa.001.02.02},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.001.02.02/}
}
TY  - JOUR
AU  - NEMATI  , K. 
AU  - MATINFAR, M.
TI  - AN IMPLICIT METHOD FOR FUZZY PARABOLIC PARTIAL DIFFERENTIAL EQUATIONS
JO  - Journal of nonlinear sciences and its applications
PY  - 2008
SP  - 61
EP  - 71
VL  - 1
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.001.02.02/
DO  - 10.22436/jnsa.001.02.02
LA  - en
ID  - JNSA_2008_1_2_a1
ER  - 
%0 Journal Article
%A NEMATI  , K. 
%A MATINFAR, M.
%T AN IMPLICIT METHOD FOR FUZZY PARABOLIC PARTIAL DIFFERENTIAL EQUATIONS
%J Journal of nonlinear sciences and its applications
%D 2008
%P 61-71
%V 1
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.001.02.02/
%R 10.22436/jnsa.001.02.02
%G en
%F JNSA_2008_1_2_a1
NEMATI  , K. ; MATINFAR, M. AN IMPLICIT METHOD FOR FUZZY PARABOLIC PARTIAL DIFFERENTIAL EQUATIONS. Journal of nonlinear sciences and its applications, Tome 1 (2008) no. 2, p. 61-71. doi : 10.22436/jnsa.001.02.02. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.001.02.02/

[1] T. Allahviranloo Difference methods for fuzzy partial differential equations , Computational Methods in Applied Mathematics, Volume 2 (3) (2002), pp. 233-242 | DOI

[2] Allahviranloo, T.; M. Afshar Difference method for solving the fuzzy parabolic equations, Applied Mathematical Sciences, Volume 1 (27) (2007), pp. 1299-1309

[3] Allahviranloo, T.; Ahmadi, N.; Ahmadi, E.; Kh. Shams Alketabi Block Jacobi two-stage method for fuzzy systems of linear equations, Applied Mathematics and Computation , Volume 175 (2006), pp. 1217-1228 | DOI

[4] Buckley, J. J.; Feuring, T. Introduction to fuzzy partial differential equations, Fuzzy Sets and Systems , Volume 105 (1999), pp. 241-248 | DOI

[5] Chang, S. L.; Zadeh, L. A. On fuzzy mapping and control, IEEE Thrans, System Man Cybernet. , Volume 2 (1972), pp. 30-34 | DOI

[6] Dubois, D.; H. Prade Towards fuzzy differential calculus: Part3, differentiation Fuzzy Sets and Systems, Volume 8 (1982), pp. 225-233 | DOI

[7] O. Kaleva Fuzzy differential equations, Fuzzy Sets and Systems, Volume 24 (1987), pp. 301-317 | DOI

[8] O. Kaleva The cuachy problem for fuzzy differential equations, Fuzzy Sets and Systems , Volume 35 (1990), pp. 389-396 | DOI

[9] S. Seikkala on the fuzzy initial value problem, Fuzzy Sets and Systems , Volume 24 (1987), pp. 319-330 | DOI

[10] G. D. Smith Numerical Solution of Partial Differential Equations, , , 1993

[11] L. A. Zadeh The concept of a linguistic variable and its application to approximate reasoning, Information Science, Volume 8 (1975), pp. 199-249 | DOI

Cité par Sources :