KANNAN FIXED POINT THEOREM ON GENERALIZED METRIC SPACES
Journal of nonlinear sciences and its applications, Tome 1 (2008) no. 1, p. 45-48.

Voir la notice de l'article provenant de la source International Scientific Research Publications

We obtain sufficient conditions for existence of unique fixed point of Kannan type mappings defined on a generalized metric space.
DOI : 10.22436/jnsa.001.01.07
Classification : 47H10, 54H25
Keywords: Fixed point, contractive type mapping, generalized metric space

AZAM , AKBAR  1 ; ARSHAD, MUHAMMAD 2

1 Department of Mathematics, F.G. Postgraduate College, Islamabad, Pakistan
2 Department of Mathematics, Faculty of Basic and Applied Sciences, International Islamic University, Islamabad, Pakistan
@article{JNSA_2008_1_1_a6,
     author = {AZAM , AKBAR  and ARSHAD, MUHAMMAD},
     title = {KANNAN {FIXED} {POINT} {THEOREM} {ON} {GENERALIZED}   {METRIC} {SPACES}},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {45-48},
     publisher = {mathdoc},
     volume = {1},
     number = {1},
     year = {2008},
     doi = {10.22436/jnsa.001.01.07},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.001.01.07/}
}
TY  - JOUR
AU  - AZAM , AKBAR 
AU  - ARSHAD, MUHAMMAD
TI  - KANNAN FIXED POINT THEOREM ON GENERALIZED   METRIC SPACES
JO  - Journal of nonlinear sciences and its applications
PY  - 2008
SP  - 45
EP  - 48
VL  - 1
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.001.01.07/
DO  - 10.22436/jnsa.001.01.07
LA  - en
ID  - JNSA_2008_1_1_a6
ER  - 
%0 Journal Article
%A AZAM , AKBAR 
%A ARSHAD, MUHAMMAD
%T KANNAN FIXED POINT THEOREM ON GENERALIZED   METRIC SPACES
%J Journal of nonlinear sciences and its applications
%D 2008
%P 45-48
%V 1
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.001.01.07/
%R 10.22436/jnsa.001.01.07
%G en
%F JNSA_2008_1_1_a6
AZAM , AKBAR ; ARSHAD, MUHAMMAD. KANNAN FIXED POINT THEOREM ON GENERALIZED   METRIC SPACES. Journal of nonlinear sciences and its applications, Tome 1 (2008) no. 1, p. 45-48. doi : 10.22436/jnsa.001.01.07. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.001.01.07/

[1] A. Branciari A fixed point theorem of Banach-Caccippoli type on a class of generalized metric spaces, Publ. Math. Debrecen, Volume 57 1-2 (2000), pp. 31-37

[2] Goebel, K.; W. A. Kirk Topics in metric fixed point theory, Cambridge University Press, Cambridge , 1990 | DOI

[3] Kannan, R. Some results on fixed points, Bull. Calcutta. Math.Soc., Volume 60 (1968), pp. 71-76

[4] B. E. Rhoads A comparison of various definitions of contractive mappings, Trans. Amer. Math. Soc., Volume 26 (1977), pp. 257-290 | Zbl | DOI

Cité par Sources :