Voir la notice de l'article provenant de la source International Scientific Research Publications
$ \begin{cases} u''' + f(t, u) = \theta,\,\,\,\,\, t \in (0, 1),\\ u(0) = u'(0) = \theta, u'(1) = \xi u'(\eta), \end{cases} $ |
ZHANG, FANG 1
@article{JNSA_2008_1_1_a5, author = {ZHANG, FANG}, title = {MULTIPLE {POSITIVE} {SOLUTIONS} {FOR} {NONLINEAR} {SINGULAR} {THIRD-ORDER} {BOUNDARY} {VALUE} {PROBLEM} {IN} {ABSTRACT} {SPACES}}, journal = {Journal of nonlinear sciences and its applications}, pages = {36-44}, publisher = {mathdoc}, volume = {1}, number = {1}, year = {2008}, doi = {10.22436/jnsa.001.01.06}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.001.01.06/} }
TY - JOUR AU - ZHANG, FANG TI - MULTIPLE POSITIVE SOLUTIONS FOR NONLINEAR SINGULAR THIRD-ORDER BOUNDARY VALUE PROBLEM IN ABSTRACT SPACES JO - Journal of nonlinear sciences and its applications PY - 2008 SP - 36 EP - 44 VL - 1 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.001.01.06/ DO - 10.22436/jnsa.001.01.06 LA - en ID - JNSA_2008_1_1_a5 ER -
%0 Journal Article %A ZHANG, FANG %T MULTIPLE POSITIVE SOLUTIONS FOR NONLINEAR SINGULAR THIRD-ORDER BOUNDARY VALUE PROBLEM IN ABSTRACT SPACES %J Journal of nonlinear sciences and its applications %D 2008 %P 36-44 %V 1 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.001.01.06/ %R 10.22436/jnsa.001.01.06 %G en %F JNSA_2008_1_1_a5
ZHANG, FANG. MULTIPLE POSITIVE SOLUTIONS FOR NONLINEAR SINGULAR THIRD-ORDER BOUNDARY VALUE PROBLEM IN ABSTRACT SPACES. Journal of nonlinear sciences and its applications, Tome 1 (2008) no. 1, p. 36-44. doi : 10.22436/jnsa.001.01.06. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.001.01.06/
[1] Third Order Linear Differential Equations, in: Math. Appl., Reidel, Dordrecht, 1987
[2] Differential inequalities and existence theorems for second and third order boundary value problems, J. Diff. Equs., Volume 10 (1971), pp. 529-537 | DOI
[3] Existence and uniqueness of solutions of boundary value problems for third order differential equations , J. Diff. Equs. , Volume 13 (1993), pp. 432-437
[4] Topological transversality: Application to third order boundary value problems, SIAM J. Math. Anal., Volume 19 (1987), pp. 630-641 | DOI
[5] The method of lower and upper solutions for second, third, fourth and higher order boundary value problems, J. Math. Anal. Appl. , Volume 185 (1994), pp. 302-320 | Zbl | DOI
[6] The method of lower and upper solutions for third order periodic boundary value problems, J. Math. Anal. Appl. , Volume 195 (1995), pp. 568-589 | DOI
[7] Existence of solution for discontinuous third order boundary value problems, J. Comput. Appl. Math., Volume 110 (1999), pp. 105-114 | DOI
[8] Extremality and comparison results for third order functional initial-boundary value problems, J. Math. Anal. Appl. , Volume 255 (2001), pp. 195-212 | Zbl | DOI
[9] Extremality and comparison results for discontinuous implicit third order functional initial-boundary value problems, Appl. Math. Comput., Volume 140 (2003), pp. 391-407 | DOI
[10] Solution and positive solution for a semilinear third-order two-point boundary value problem, Appl. Math. Lett. , Volume 17 (2004), pp. 1171-1175 | DOI
[11] Existence of positive solutions for nonlinear third-order three-point boundary value problem, J. Math. Anal. Appl. , Volume 306 (2005), pp. 589-603
[12] Existence of positive solutions for nonlinear third-order three-point boundary value problem , Nonlinear Anal., Volume 68 (2008), pp. 3151-3158 | DOI
[13] Ordinary differential equations in Banach spaces, LNM 886. , Berlin: Springer-Verlag, New York, 1987
[14] Nonlinear differential equations in abstract spaces, Pergamon, Oxford, 1981
[15] Nonlinear Problems in Abstract Cones, Academic Press , Boston, MA, 1988
[16] Nonlinear Integral Equations in Abstract Spaces, Kluwer Academic Publishers, Dordrecht, , 1996 | DOI
Cité par Sources :