MULTIPLE POSITIVE SOLUTIONS FOR NONLINEAR SINGULAR THIRD-ORDER BOUNDARY VALUE PROBLEM IN ABSTRACT SPACES
Journal of nonlinear sciences and its applications, Tome 1 (2008) no. 1, p. 36-44.

Voir la notice de l'article provenant de la source International Scientific Research Publications

In this paper, we study the nonlinear singular boundary value problem in abstract spaces:
$ \begin{cases} u''' + f(t, u) = \theta,\,\,\,\,\, t \in (0, 1),\\ u(0) = u'(0) = \theta, u'(1) = \xi u'(\eta), \end{cases} $
where $0 \eta 1$ and $1 \xi\frac{1}{\eta}, \theta$ denotes the zero element of $E, E$ is a real Banach space, and $f(t, u)$ is allowed to be singular at both end point $t = 0$ and $t = 1$. We show the existence of at least two positive solutions of this problem.
DOI : 10.22436/jnsa.001.01.06
Classification : 34G20, 34B16
Keywords: Singular boundary value problem, Abstract spaces, Positive solutions, Fixed point theorem.

ZHANG, FANG 1

1 School of Mathematics and Physics, Jiangsu Polytechnic University, Changzhou, 213164, PR China.
@article{JNSA_2008_1_1_a5,
     author = {ZHANG, FANG},
     title = {MULTIPLE {POSITIVE} {SOLUTIONS} {FOR} {NONLINEAR} {SINGULAR} {THIRD-ORDER} {BOUNDARY} {VALUE} {PROBLEM} {IN} {ABSTRACT} {SPACES}},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {36-44},
     publisher = {mathdoc},
     volume = {1},
     number = {1},
     year = {2008},
     doi = {10.22436/jnsa.001.01.06},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.001.01.06/}
}
TY  - JOUR
AU  - ZHANG, FANG
TI  - MULTIPLE POSITIVE SOLUTIONS FOR NONLINEAR SINGULAR THIRD-ORDER BOUNDARY VALUE PROBLEM IN ABSTRACT SPACES
JO  - Journal of nonlinear sciences and its applications
PY  - 2008
SP  - 36
EP  - 44
VL  - 1
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.001.01.06/
DO  - 10.22436/jnsa.001.01.06
LA  - en
ID  - JNSA_2008_1_1_a5
ER  - 
%0 Journal Article
%A ZHANG, FANG
%T MULTIPLE POSITIVE SOLUTIONS FOR NONLINEAR SINGULAR THIRD-ORDER BOUNDARY VALUE PROBLEM IN ABSTRACT SPACES
%J Journal of nonlinear sciences and its applications
%D 2008
%P 36-44
%V 1
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.001.01.06/
%R 10.22436/jnsa.001.01.06
%G en
%F JNSA_2008_1_1_a5
ZHANG, FANG. MULTIPLE POSITIVE SOLUTIONS FOR NONLINEAR SINGULAR THIRD-ORDER BOUNDARY VALUE PROBLEM IN ABSTRACT SPACES. Journal of nonlinear sciences and its applications, Tome 1 (2008) no. 1, p. 36-44. doi : 10.22436/jnsa.001.01.06. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.001.01.06/

[1] M. Gregus Third Order Linear Differential Equations, in: Math. Appl., Reidel, Dordrecht, 1987

[2] Klaasen, G. Differential inequalities and existence theorems for second and third order boundary value problems, J. Diff. Equs., Volume 10 (1971), pp. 529-537 | DOI

[3] Jackson, L. K. Existence and uniqueness of solutions of boundary value problems for third order differential equations , J. Diff. Equs. , Volume 13 (1993), pp. 432-437

[4] D. J. ORegan Topological transversality: Application to third order boundary value problems, SIAM J. Math. Anal., Volume 19 (1987), pp. 630-641 | DOI

[5] Cabada, A. The method of lower and upper solutions for second, third, fourth and higher order boundary value problems, J. Math. Anal. Appl. , Volume 185 (1994), pp. 302-320 | Zbl | DOI

[6] A. Cabada The method of lower and upper solutions for third order periodic boundary value problems, J. Math. Anal. Appl. , Volume 195 (1995), pp. 568-589 | DOI

[7] Cabada, A.; S. Lois Existence of solution for discontinuous third order boundary value problems, J. Comput. Appl. Math., Volume 110 (1999), pp. 105-114 | DOI

[8] Cabada, A.; Heikkil’a, S. Extremality and comparison results for third order functional initial-boundary value problems, J. Math. Anal. Appl. , Volume 255 (2001), pp. 195-212 | Zbl | DOI

[9] Cabada, A.; Heikkil’a, S. Extremality and comparison results for discontinuous implicit third order functional initial-boundary value problems, Appl. Math. Comput., Volume 140 (2003), pp. 391-407 | DOI

[10] Yao, Q. Solution and positive solution for a semilinear third-order two-point boundary value problem, Appl. Math. Lett. , Volume 17 (2004), pp. 1171-1175 | DOI

[11] Sun, Y. Existence of positive solutions for nonlinear third-order three-point boundary value problem, J. Math. Anal. Appl. , Volume 306 (2005), pp. 589-603

[12] Guo, L.; Sun, J.; Y. Zhao Existence of positive solutions for nonlinear third-order three-point boundary value problem , Nonlinear Anal., Volume 68 (2008), pp. 3151-3158 | DOI

[13] K. Deimling Ordinary differential equations in Banach spaces, LNM 886. , Berlin: Springer-Verlag, New York, 1987

[14] Lakshmikantham, V.; Leela, S. Nonlinear differential equations in abstract spaces, Pergamon, Oxford, 1981

[15] Guo, D.; V. Lakshmikantham Nonlinear Problems in Abstract Cones, Academic Press , Boston, MA, 1988

[16] Guo, D.; Lakshmikantham, V.; X. Liu Nonlinear Integral Equations in Abstract Spaces, Kluwer Academic Publishers, Dordrecht, , 1996 | DOI

Cité par Sources :