COMMON FIXED POINT THEOREM IN PROBABILISTIC QUASI-METRIC SPACES
Journal of nonlinear sciences and its applications, Tome 1 (2008) no. 1, p. 31-35.

Voir la notice de l'article provenant de la source International Scientific Research Publications

In this paper, we consider complete probabilistic quasi-metric space and prove a common fixed point theorem for R-weakly commuting maps in this space.
DOI : 10.22436/jnsa.001.01.05
Classification : 54E70, 54H25
Keywords: Probabilistic metric spaces, quasi-metric spaces, fixed point theorem, R-weakly commuting maps, triangle function.

SHABANI , A.R.  1 ; GHASEMPOUR, S. 2

1 Department of Mathematics, Imam Khomaini Mritime University of Nowshahr Nowshahr, Iran
2 Department of Mathematics, Payam noor University, Amol, Iran
@article{JNSA_2008_1_1_a4,
     author = {SHABANI , A.R.  and GHASEMPOUR, S.},
     title = {COMMON {FIXED} {POINT} {THEOREM} {IN} {PROBABILISTIC} {QUASI-METRIC} {SPACES}},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {31-35},
     publisher = {mathdoc},
     volume = {1},
     number = {1},
     year = {2008},
     doi = {10.22436/jnsa.001.01.05},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.001.01.05/}
}
TY  - JOUR
AU  - SHABANI , A.R. 
AU  - GHASEMPOUR, S.
TI  - COMMON FIXED POINT THEOREM IN PROBABILISTIC QUASI-METRIC SPACES
JO  - Journal of nonlinear sciences and its applications
PY  - 2008
SP  - 31
EP  - 35
VL  - 1
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.001.01.05/
DO  - 10.22436/jnsa.001.01.05
LA  - en
ID  - JNSA_2008_1_1_a4
ER  - 
%0 Journal Article
%A SHABANI , A.R. 
%A GHASEMPOUR, S.
%T COMMON FIXED POINT THEOREM IN PROBABILISTIC QUASI-METRIC SPACES
%J Journal of nonlinear sciences and its applications
%D 2008
%P 31-35
%V 1
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.001.01.05/
%R 10.22436/jnsa.001.01.05
%G en
%F JNSA_2008_1_1_a4
SHABANI , A.R. ; GHASEMPOUR, S. COMMON FIXED POINT THEOREM IN PROBABILISTIC QUASI-METRIC SPACES. Journal of nonlinear sciences and its applications, Tome 1 (2008) no. 1, p. 31-35. doi : 10.22436/jnsa.001.01.05. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.001.01.05/

[1] I. Beg Fixed points of contractive mappings on probabilistic Banach spaces, Stoch. Anal. Appl., Volume 19 (2001), pp. 455-460 | DOI

[2] Chang, S. S.; Lee, B. S.; Cho, Y. J.; Chen, Y. Q.; Kang, S. M.; Jung, J. S. Generalized contraction mapping principles and differential equations in probabilistic metric spaces, Proc. Amer. Math. Soc. , Volume 124 (1996), pp. 2367-2376 | DOI

[3] Reilly, I. L.; Subrahmanyam, P. V.; Vamanamurthy, M. K. Cauchy sequences in quasipseudo- metric spaces, Monatsh. Math. , Volume 93 (1982), pp. 127-140 | DOI

[4] Schweizer, B.; A. Sklar Probabilistic Metric Spaces, Elsevier North Holand, New York, 1983

[5] Schweizer, B.; Sherwood, H.; R. M. Tardiff Contractions on PM-space examples and counterexamples, Stochastica, Volume 1 (1988), pp. 5-17 | EuDML

[6] D. A. Sibley A metric for weak convergence of distribution functions, Rocky Mountain J. Math. , Volume 1 (1971), pp. 427-430 | DOI

Cité par Sources :