Voir la notice de l'article provenant de la source International Scientific Research Publications
SHABANI , A.R.  1 ; GHASEMPOUR, S. 2
@article{JNSA_2008_1_1_a4, author = {SHABANI , A.R. and GHASEMPOUR, S.}, title = {COMMON {FIXED} {POINT} {THEOREM} {IN} {PROBABILISTIC} {QUASI-METRIC} {SPACES}}, journal = {Journal of nonlinear sciences and its applications}, pages = {31-35}, publisher = {mathdoc}, volume = {1}, number = {1}, year = {2008}, doi = {10.22436/jnsa.001.01.05}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.001.01.05/} }
TY - JOUR AU - SHABANI , A.R. AU - GHASEMPOUR, S. TI - COMMON FIXED POINT THEOREM IN PROBABILISTIC QUASI-METRIC SPACES JO - Journal of nonlinear sciences and its applications PY - 2008 SP - 31 EP - 35 VL - 1 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.001.01.05/ DO - 10.22436/jnsa.001.01.05 LA - en ID - JNSA_2008_1_1_a4 ER -
%0 Journal Article %A SHABANI , A.R. %A GHASEMPOUR, S. %T COMMON FIXED POINT THEOREM IN PROBABILISTIC QUASI-METRIC SPACES %J Journal of nonlinear sciences and its applications %D 2008 %P 31-35 %V 1 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.001.01.05/ %R 10.22436/jnsa.001.01.05 %G en %F JNSA_2008_1_1_a4
SHABANI , A.R. ; GHASEMPOUR, S. COMMON FIXED POINT THEOREM IN PROBABILISTIC QUASI-METRIC SPACES. Journal of nonlinear sciences and its applications, Tome 1 (2008) no. 1, p. 31-35. doi : 10.22436/jnsa.001.01.05. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.001.01.05/
[1] Fixed points of contractive mappings on probabilistic Banach spaces, Stoch. Anal. Appl., Volume 19 (2001), pp. 455-460 | DOI
[2] Generalized contraction mapping principles and differential equations in probabilistic metric spaces, Proc. Amer. Math. Soc. , Volume 124 (1996), pp. 2367-2376 | DOI
[3] Cauchy sequences in quasipseudo- metric spaces, Monatsh. Math. , Volume 93 (1982), pp. 127-140 | DOI
[4] Probabilistic Metric Spaces, Elsevier North Holand, New York, 1983
[5] Contractions on PM-space examples and counterexamples, Stochastica, Volume 1 (1988), pp. 5-17 | EuDML
[6] A metric for weak convergence of distribution functions, Rocky Mountain J. Math. , Volume 1 (1971), pp. 427-430 | DOI
Cité par Sources :