Voir la notice de l'article provenant de la source International Scientific Research Publications
Yao, Li 1 ; Chang, Jin-Rong 1
@article{JNSA_2008_1_1_a0, author = {Yao, Li and Chang, Jin-Rong}, title = {Variational principle for nonlinear {Schr\"odinger} equation with high nonlinearity}, journal = {Journal of nonlinear sciences and its applications}, pages = {1-4}, publisher = {mathdoc}, volume = {1}, number = {1}, year = {2008}, doi = {10.22436/jnsa.001.01.01}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.001.01.01/} }
TY - JOUR AU - Yao, Li AU - Chang, Jin-Rong TI - Variational principle for nonlinear Schrödinger equation with high nonlinearity JO - Journal of nonlinear sciences and its applications PY - 2008 SP - 1 EP - 4 VL - 1 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.001.01.01/ DO - 10.22436/jnsa.001.01.01 LA - en ID - JNSA_2008_1_1_a0 ER -
%0 Journal Article %A Yao, Li %A Chang, Jin-Rong %T Variational principle for nonlinear Schrödinger equation with high nonlinearity %J Journal of nonlinear sciences and its applications %D 2008 %P 1-4 %V 1 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.001.01.01/ %R 10.22436/jnsa.001.01.01 %G en %F JNSA_2008_1_1_a0
Yao, Li; Chang, Jin-Rong. Variational principle for nonlinear Schrödinger equation with high nonlinearity. Journal of nonlinear sciences and its applications, Tome 1 (2008) no. 1, p. 1-4. doi : 10.22436/jnsa.001.01.01. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.001.01.01/
[1] Exact solutions for a class of nonlinear partial differential equations using exp-function method, Int. J. Nonlinear Sci., Volume 8 (2007), pp. 505-512 | DOI
[2] Exact solutions for non-linear Schrödinger equations by He's homotopy perturbation method, Phys. Lett. A, Volume 366 (2008), pp. 79-84 | DOI | Zbl
[3] The use of Variational Iteration Method, Differential Transform Method and Adomian Decomposition Method for solving different types of nonlinear partial differential equations, Int. J. Nonlinear Sci. , Volume 7 (2006), pp. 65-70 | DOI
[4] New application of He’s homotopy perturbation method, Int. J. Nonlinear Sci. , Volume 8 (2007), pp. 319-328 | DOI
[5] New interpretation of homotopy perturbation method, Int. J. Modern Phys., Volume 2006 (B 20), pp. 2561-2568 | DOI
[6] Variational iteration method - Some recent results and new interpretations, J. Comput. and Appl. Math., Volume 207 (2007), pp. 3-17 | Zbl | DOI
[7] Variational principles for some nonlinear partial differential equations with variable coefficients, Chaos, Solitons, Fractals, Volume 19 (2004), pp. 847-851 | DOI
[8] Variational approach to (2+1)-dimensional dispersive long water equations, Phys. Lett. A , Volume 335 (2005), pp. 182-184 | Zbl | DOI
[9] Some Asymptotic Methods for Strongly Nonlinear Equations, Int. J. Modern Phys. , Volume B 20 (2006), pp. 1141-1199 | DOI
[10] Non-perturbative methods for strongly nonlinear problems, dissertation.de-Verlag im Internet GmbH, Berlin, 2006
[11] New interpretation of homotopy perturbation method, Int. J. Modern Phys. , Volume B 20 (2006), pp. 2561-2568 | DOI
[12] Variational iteration method: New development and applications, Comput. & Math. with Appl. , Volume 54 (2007), pp. 881-894 | Zbl | DOI
[13] Construction of solitary solution and compacton-like solution by variational iteration method, Chaos Solitons, Fractals. , Volume 29 (2006), pp. 108-113 | DOI | Zbl
[14] Exp-function method for nonlinear wave equations, Chaos Solitons, Fractals , Volume 30 (2006), pp. 700-708 | DOI
[15] Application of variational iteration method to Nonlinear differential equations of fractional order, Int. J. Nonlinear Sci. , Volume 7 (2006), pp. 27-34 | DOI
[16] Application of He’s semi-inverse method to the nonlinear Schrodinger equation, Comput. & Math. with Appl., Volume 54 (2007), pp. 1039-1042 | Zbl | DOI
[17] Analytic treatment of linear and nonlinear Schrodinger equations: A study with homotopy-perturbation and Adomian decomposition methods, Phys. Lett. A , Volume 372 (2008), pp. 465-469 | Zbl | DOI
[18] Variational iteration method for solving cubic nonlinear Schrödinger equation, J. of Comput. and Appl. Math., Volume 207 (2007), pp. 155-163 | Zbl | DOI
[19] Variational iteration method for coupled nonlinear Schrodinger equations, Comput. & Math. with Appl. , Volume 54 (2007), pp. 993-999 | DOI
[20] Variational approach to the inviscid compressible fluid , Acta Appl. Math., Volume 100 (2008), pp. 291-294 | DOI
[21] Solitary solutions, periodic solutions and compacton-like solutions using the Exp-function method, Comput. & Math. with Appl. , Volume 54 (2007), pp. 966-986 | Zbl | DOI
[22] Variational principles for coupled nonlinear Schrödinger equations, Phys. Lett. A , Volume 359 ( 2006), pp. 627-629 | DOI
[23] Variational approach to solitary wave solution of the generalized Zakharov equation, Comput. & Math. with Appl., Volume 54 (2007), pp. 1043-1046 | Zbl | DOI
[24] Variational theory for physiological flow, Comput. & Math. with Appl., Volume 54 (2007), pp. 1000-1002 | DOI
[25] Variational approach to the Broer-Kaup-Kupershmidt equation, Phys. Lett. A , Volume 363 (2007), pp. 108-109 | Zbl | DOI
[26] Exp-function method for the Hybrid-Lattice system, Int. J. Nonlinear Sci. , Volume 8 (2007), pp. 461-464 | DOI
[27] Exp-function method for the discrete mKdV lattice, Int. J. Nonlinear Sci., Volume 8 (2007), pp. 465-468 | DOI
Cité par Sources :