Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
We show that the singularity type of solutions to the Kähler–Ricci flow on a numerically effective manifold does not depend on the initial metric. More precisely, if there exists a type-III solution to the Kähler–Ricci flow, then any other solution starting from a different initial metric will also be type III. This generalizes a previous result by Yashan Zhang for the semiample case, and confirms a conjecture by Valentino Tosatti.
Wondo, Hosea 1 ; Zhang, Zhou 1
@article{GT_2025_29_1_a11, author = {Wondo, Hosea and Zhang, Zhou}, title = {Independence of singularity type for numerically effective {K\"ahler{\textendash}Ricci} flows}, journal = {Geometry & topology}, pages = {479--494}, publisher = {mathdoc}, volume = {29}, number = {1}, year = {2025}, doi = {10.2140/gt.2025.29.479}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2025.29.479/} }
TY - JOUR AU - Wondo, Hosea AU - Zhang, Zhou TI - Independence of singularity type for numerically effective Kähler–Ricci flows JO - Geometry & topology PY - 2025 SP - 479 EP - 494 VL - 29 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/gt.2025.29.479/ DO - 10.2140/gt.2025.29.479 ID - GT_2025_29_1_a11 ER -
%0 Journal Article %A Wondo, Hosea %A Zhang, Zhou %T Independence of singularity type for numerically effective Kähler–Ricci flows %J Geometry & topology %D 2025 %P 479-494 %V 29 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.2140/gt.2025.29.479/ %R 10.2140/gt.2025.29.479 %F GT_2025_29_1_a11
Wondo, Hosea; Zhang, Zhou. Independence of singularity type for numerically effective Kähler–Ricci flows. Geometry & topology, Tome 29 (2025) no. 1, pp. 479-494. doi : 10.2140/gt.2025.29.479. http://geodesic.mathdoc.fr/articles/10.2140/gt.2025.29.479/
[1] Deformation of Kähler metrics to Kähler–Einstein metrics on compact Kähler manifolds, Invent. Math. 81 (1985) 359 | DOI
,[2] On the collapsing rate of the Kähler–Ricci flow with finite-time singularity, J. Geom. Anal. 25 (2015) 1098 | DOI
,[3] Local curvature estimates of long-time solutions to the Kähler–Ricci flow, Adv. Math. 375 (2020) 107416 | DOI
, ,[4] Geometric convergence of the Kähler–Ricci flow on complex surfaces of general type, Int. Math. Res. Not. 2016 (2016) 5652 | DOI
, , ,[5] Three-manifolds with positive Ricci curvature, J. Differential Geom. 17 (1982) 255
,[6] Convergence of scalar curvature of Kähler–Ricci flow on manifolds of positive Kodaira dimension, Adv. Math. 371 (2020) 107253 | DOI
,[7] On holomorphic mappings of complex manifolds, PhD thesis, University of California, Berkeley (1967)
,[8] Introduction to the Mori program, Springer (2002) | DOI
,[9] On convergence of the Kähler–Ricci flow, Comm. Anal. Geom. 19 (2011) 887 | DOI
, ,[10] On stability and the convergence of the Kähler–Ricci flow, J. Differential Geom. 72 (2006) 149
, ,[11] Multiplier ideal sheaves and the Kähler–Ricci flow, Comm. Anal. Geom. 15 (2007) 613 | DOI
, , ,[12] The Kähler–Ricci flow on surfaces of positive Kodaira dimension, Invent. Math. 170 (2007) 609 | DOI
, ,[13] Canonical measures and Kähler–Ricci flow, J. Amer. Math. Soc. 25 (2012) 303 | DOI
, ,[14] Bounding scalar curvature for global solutions of the Kähler–Ricci flow, Amer. J. Math. 138 (2016) 683 | DOI
, ,[15] The Kähler–Ricci flow through singularities, Invent. Math. 207 (2017) 519 | DOI
, ,[16] Contracting exceptional divisors by the Kähler–Ricci flow, Duke Math. J. 162 (2013) 367 | DOI
, ,[17] An introduction to the Kähler–Ricci flow, from: "An introduction to the Kähler–Ricci flow" (editors S Boucksom, P Eyssidieux, V Guedj), Lecture Notes in Math. 2086, Springer (2013) 89 | DOI
, ,[18] Contracting exceptional divisors by the Kähler–Ricci flow, II, Proc. Lond. Math. Soc. 108 (2014) 1529 | DOI
, ,[19] Metric flips with Calabi ansatz, Geom. Funct. Anal. 22 (2012) 240 | DOI
, ,[20] Existence of Einstein metrics on Fano manifolds, from: "Metric and differential geometry" (editors X Dai, X Rong), Progr. Math. 297, Birkhäuser (2012) 119 | DOI
,[21] Some progresses on Kähler–Ricci flow, Boll. Unione Mat. Ital. 12 (2019) 251 | DOI
,[22] On the Kähler–Ricci flow on projective manifolds of general type, Chinese Ann. Math. Ser. B 27 (2006) 179 | DOI
, ,[23] Convergence of Kähler–Ricci flow on lower-dimensional algebraic manifolds of general type, Int. Math. Res. Not. 2016 (2016) 6493 | DOI
, ,[24] KAWA lecture notes on the Kähler–Ricci flow, Ann. Fac. Sci. Toulouse Math. 27 (2018) 285 | DOI
,[25] Infinite-time singularities of the Kähler–Ricci flow, Geom. Topol. 19 (2015) 2925 | DOI
, ,[26] The Kähler–Ricci flow, Ricci-flat metrics and collapsing limits, Amer. J. Math. 140 (2018) 653 | DOI
, , ,[27] The modified Kähler–Ricci flow, II, preprint (2022)
, ,[28] A general Schwarz lemma for Kähler manifolds, Amer. J. Math. 100 (1978) 197 | DOI
,[29] On the convergence of a modified Kähler–Ricci flow, Math. Z. 268 (2011) 281 | DOI
,[30] A modified Kähler–Ricci flow, Math. Ann. 345 (2009) 559 | DOI
,[31] Scalar curvature bound for Kähler–Ricci flows over minimal manifolds of general type, Int. Math. Res. Not. 2009 (2009) 3901 | DOI
,[32] Scalar curvature behavior for finite-time singularity of Kähler–Ricci flow, Michigan Math. J. 59 (2010) 419 | DOI
,[33] Collapsing limits of the Kähler–Ricci flow and the continuity method, Math. Ann. 374 (2019) 331 | DOI
,[34] Infinite-time singularity type of the Kähler–Ricci flow, J. Geom. Anal. 30 (2020) 2092 | DOI
,Cité par Sources :