On termination of flips and exceptionally noncanonical singularities
Geometry & topology, Tome 29 (2025) no. 1, pp. 399-441.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

We systematically introduce and study a new type of singularity, namely, exceptionally noncanonical (enc) singularities. This class of singularities plays an important role in the study of many questions in birational geometry, and has tight connections with local K-stability theory, Calabi–Yau varieties, and mirror symmetry.

We reduce the termination of flips to the termination of terminal flips and the ACC conjecture for minimal log discrepancies (mlds) of enc pairs. As a consequence, the ACC conjecture for mlds of enc pairs implies the termination of flips in dimension 4.

We show that, in any fixed dimension, the termination of flips follows from the lower-semicontinuity for mlds of terminal pairs, and the ACC for mlds of terminal and enc pairs. Moreover, in dimension 3, we give a rough classification of enc singularities, and prove the ACC for mlds of enc pairs. These two results provide a second proof of the termination of flips in dimension 3 which does not rely on any difficulty function.

Finally, we propose and prove the special cases of several conjectures on enc singularities and local K-stability theory. We also discuss the relationship between enc singularities, exceptional Fano varieties, and Calabi–Yau varieties with small mlds or large indices via mirror symmetry.

DOI : 10.2140/gt.2025.29.399
Keywords: minimal model program, minimal log discrepancy, termination of flips

Han, Jingjun 1 ; Liu, Jihao 2

1 Shanghai Center for Mathematical Sciences, Fudan University, Shanghai, China
2 Department of Mathematics, Peking University, Beijing, China
@article{GT_2025_29_1_a9,
     author = {Han, Jingjun and Liu, Jihao},
     title = {On termination of flips and exceptionally noncanonical singularities},
     journal = {Geometry & topology},
     pages = {399--441},
     publisher = {mathdoc},
     volume = {29},
     number = {1},
     year = {2025},
     doi = {10.2140/gt.2025.29.399},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2025.29.399/}
}
TY  - JOUR
AU  - Han, Jingjun
AU  - Liu, Jihao
TI  - On termination of flips and exceptionally noncanonical singularities
JO  - Geometry & topology
PY  - 2025
SP  - 399
EP  - 441
VL  - 29
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2025.29.399/
DO  - 10.2140/gt.2025.29.399
ID  - GT_2025_29_1_a9
ER  - 
%0 Journal Article
%A Han, Jingjun
%A Liu, Jihao
%T On termination of flips and exceptionally noncanonical singularities
%J Geometry & topology
%D 2025
%P 399-441
%V 29
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2025.29.399/
%R 10.2140/gt.2025.29.399
%F GT_2025_29_1_a9
Han, Jingjun; Liu, Jihao. On termination of flips and exceptionally noncanonical singularities. Geometry & topology, Tome 29 (2025) no. 1, pp. 399-441. doi : 10.2140/gt.2025.29.399. http://geodesic.mathdoc.fr/articles/10.2140/gt.2025.29.399/

[1] V Alexeev, Two two-dimensional terminations, Duke Math. J. 69 (1993) 527 | DOI

[2] V Alexeev, W Liu, Open surfaces of small volume, Algebr. Geom. 6 (2019) 312 | DOI

[3] V Alexeev, C Hacon, Y Kawamata, Termination of (many) 4-dimensional log flips, Invent. Math. 168 (2007) 433 | DOI

[4] F Ambro, On minimal log discrepancies, Math. Res. Lett. 6 (1999) 573 | DOI

[5] F Ambro, The set of toric minimal log discrepancies, Cent. Eur. J. Math. 4 (2006) 358 | DOI

[6] C Birkar, Anti-pluricanonical systems on Fano varieties, Ann. of Math. 190 (2019) 345 | DOI

[7] C Birkar, D Q Zhang, Effectivity of Iitaka fibrations and pluricanonical systems of polarized pairs, Publ. Math. Inst. Hautes Études Sci. 123 (2016) 283 | DOI

[8] C Birkar, P Cascini, C D Hacon, J Mckernan, Existence of minimal models for varieties of log general type, J. Amer. Math. Soc. 23 (2010) 405 | DOI

[9] J J Chen, Accumulation points on 3-fold canonical thresholds, preprint (2022)

[10] G Chen, J Han, Boundedness of (ε,n)-complements for surfaces, preprint (2020)

[11] G D Chen, N Tsakanikas, On the termination of flips for log canonical generalized pairs, Acta Math. Sin. (Engl. Ser.) 39 (2023) 967 | DOI

[12] W Chen, G Di Cerbo, J Han, C Jiang, R Svaldi, Birational boundedness of rationally connected Calabi–Yau 3-folds, Adv. Math. 378 (2021) 107541 | DOI

[13] W Chen, Y Gongyo, Y Nakamura, On generalized minimal log discrepancy, J. Math. Soc. Japan 76 (2024) 393 | DOI

[14] L Ein, M Mustaţă, T Yasuda, Jet schemes, log discrepancies and inversion of adjunction, Invent. Math. 153 (2003) 519 | DOI

[15] L Esser, B Totaro, C Wang, Calabi–Yau varieties of large index, preprint (2022)

[16] O Fujino, Termination of 4-fold canonical flips, Publ. Res. Inst. Math. Sci. 40 (2004) 231 | DOI

[17] O Fujino, Special termination and reduction to pl flips, from: "Flips for -folds and -folds" (editor A Corti), Oxford Lect. Ser. Math. Appl. 35, Oxford Univ. Press (2007) 63 | DOI

[18] O Fujino, Foundations of the minimal model program, 35, Math. Soc. Japan (2017) | DOI

[19] W Fulton, Intersection theory, 2, Springer (1984) | DOI

[20] C D Hacon, J Liu, Existence of flips for generalized lc pairs, Camb. J. Math. 11 (2023) 795 | DOI

[21] C D Hacon, J Mckernan, C Xu, ACC for log canonical thresholds, Ann. of Math. 180 (2014) 523 | DOI

[22] J Han, C Jiang, Birational boundedness of rationally connected log Calabi–Yau pairs with fixed index, Algebraic Geom. Phys. 1 (2024) 59 | DOI

[23] J Han, Z Li, Weak Zariski decompositions and log terminal models for generalized pairs, Math. Z. 302 (2022) 707 | DOI

[24] J Han, J Liu, Classification of threefold enc cDV quotient singularities, preprint (2025)

[25] J Han, Y Luo, On boundedness of divisors computing minimal log discrepancies for surfaces, J. Inst. Math. Jussieu 22 (2023) 2907 | DOI

[26] J J Han, Y J Luo, A simple proof of ACC for minimal log discrepancies for surfaces, Acta Math. Sin. (Engl. Ser.) 40 (2024) 425 | DOI

[27] J Han, Z Li, L Qi, ACC for log canonical threshold polytopes, Amer. J. Math. 143 (2021) 681 | DOI

[28] J Han, J Liu, Y Luo, ACC for minimal log discrepancies of terminal threefolds, preprint (2022)

[29] J Han, Y Liu, L Qi, ACC for local volumes and boundedness of singularities, J. Algebraic Geom. 32 (2023) 519 | DOI

[30] J Han, J Liu, V V Shokurov, ACC for minimal log discrepancies of exceptional singularities, Peking Math. J. (2024) | DOI

[31] T Hayakawa, Blowing ups of 3-dimensional terminal singularities, Publ. Res. Inst. Math. Sci. 35 (1999) 515 | DOI

[32] C Jiang, A gap theorem for minimal log discrepancies of noncanonical singularities in dimension three, J. Algebraic Geom. 30 (2021) 759 | DOI

[33] M Kawakita, Three-fold divisorial contractions to singularities of higher indices, Duke Math. J. 130 (2005) 57 | DOI

[34] M Kawakita, A connectedness theorem over the spectrum of a formal power series ring, Int. J. Math. 26 (2015) 1550088 | DOI

[35] M Kawakita, The index of a threefold canonical singularity, Amer. J. Math. 137 (2015) 271 | DOI

[36] Y Kawamata, Crepant blowing-up of 3-dimensional canonical singularities and its application to degenerations of surfaces, Ann. of Math. 127 (1988) 93 | DOI

[37] Y Kawamata, The minimal discrepancy of a 3-fold terminal singularity (1992)

[38] Y Kawamata, Termination of log flips for algebraic 3-folds, Int. J. Math. 3 (1992) 653 | DOI

[39] Y Kawamata, K Matsuda, K Matsuki, Introduction to the minimal model problem, from: "Algebraic geometry" (editor T Oda), Adv. Stud. Pure Math. 10, North-Holland (1987) 283 | DOI

[40] J Kollár, editor, Flips and abundance for algebraic threefolds, 211, Soc. Math. France (1992) 1

[41] J Kollár, Rational curves on algebraic varieties, 32, Springer (1996) | DOI

[42] J Kollár, Moduli of varieties of general type, from: "Handbook of moduli, II" (editors G Farkas, I Morrison), Adv. Lect. Math. 25, International (2013) 131

[43] J Kollár, S Mori, Birational geometry of algebraic varieties, 134, Cambridge Univ. Press (1998) | DOI

[44] J Kollár, N I Shepherd-Barron, Threefolds and deformations of surface singularities, Invent. Math. 91 (1988) 299 | DOI

[45] C Li, Y Liu, C Xu, A guided tour to normalized volume, from: "Geometric analysis" (editors J Chen, P Lu, Z Lu, Z Zhang), Progr. Math. 333, Birkhäuser (2020) 167 | DOI

[46] J Liu, Toward the equivalence of the ACC for a-log canonical thresholds and the ACC for minimal log discrepancies, preprint (2018)

[47] J Liu, Remark on complements on surfaces, Forum Math. Sigma 11 (2023) | DOI

[48] J Liu, Y Luo, Second largest accumulation point of minimal log discrepancies of threefolds, preprint (2022)

[49] J Liu, V V Shokurov, Optimal bounds on surfaces, preprint (2023)

[50] J Liu, L Xiao, An optimal gap of minimal log discrepancies of threefold non-canonical singularities, J. Pure Appl. Algebra 225 (2021) 106674 | DOI

[51] D Markushevich, Minimal discrepancy for a terminal cDV singularity is 1, J. Math. Sci. Univ. Tokyo 3 (1996) 445

[52] S Mori, On 3-dimensional terminal singularities, Nagoya Math. J. 98 (1985) 43 | DOI

[53] Y Nakamura, On minimal log discrepancies on varieties with fixed Gorenstein index, Michigan Math. J. 65 (2016) 165

[54] Y Nakamura, K Shibata, Inversion of adjunction for quotient singularities, II: Non-linear actions, (2021)

[55] Y Nakamura, K Shibata, Inversion of adjunction for quotient singularities, Algebr. Geom. 9 (2022) 214 | DOI

[56] M Reid, Young person’s guide to canonical singularities, from: "Algebraic geometry" (editor S J Bloch), Proc. Sympos. Pure Math. 46, Amer. Math. Soc. (1987) 345 | DOI

[57] V V Shokurov, A nonvanishing theorem, Izv. Akad. Nauk SSSR Ser. Mat. 49 (1985) 635

[58] V V Shokurov, Problems about Fano varieties, from: "Birational geometry of algebraic varieties", Open Problems 23, Taniguchi Found. (1988) 30

[59] V V Shokurov, Semi-stable 3-fold flips, Izv. Ross. Akad. Nauk Ser. Mat. 57 (1993) 165 | DOI

[60] V V Shokurov, ACC in codimension 2, personal note (1994)

[61] V V Shokurov, 3-Fold log models, J. Math. Sci. 81 (1996) 2667 | DOI

[62] V V Shokurov, Letters of a bi-rationalist, V : Minimal log discrepancies and termination of log flips, Tr. Mat. Inst. Steklova 246 (2004) 328

[63] V V Shokurov, Existence and boundedness of n-complements, preprint (2020)

[64] Z Zhuang, On boundedness of singularities and minimal log discrepancies of Kollár components, J. Algebraic Geom. 33 (2024) 521 | DOI

Cité par Sources :