An embedding of skein algebras of surfaces into localized quantum tori from Dehn–Thurston coordinates
Geometry & topology, Tome 29 (2025) no. 1, pp. 313-348.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

We construct embeddings of Kauffman bracket skein algebras of surfaces (either closed or with boundary) into localized quantum tori using the action of the skein algebra on the skein module of the handlebody. We use those embeddings to study representations of Kauffman skein algebras at roots of unity and get a new proof of Bonahon and Wong’s unicity conjecture. Our method allows one to explicitly reconstruct the unique representation with fixed classical shadow, as long as the classical shadow is irreducible with image not conjugate to the quaternion group.

DOI : 10.2140/gt.2025.29.313
Keywords: skein algebras, quantum tori, Azumaya locus

Detcherry, Renaud 1 ; Santharoubane, Ramanujan 2

1 Institut de Mathématiques de Bourgogne, UMR 5584 CNRS, Université de Bourgogne, Dijon, France
2 Laboratoire Mathématiques d’Orsay, UMR 8628 CNRS, Université Paris-Saclay, Orsay, France
@article{GT_2025_29_1_a7,
     author = {Detcherry, Renaud and Santharoubane, Ramanujan},
     title = {An embedding of skein algebras of surfaces into localized quantum tori from {Dehn{\textendash}Thurston} coordinates},
     journal = {Geometry & topology},
     pages = {313--348},
     publisher = {mathdoc},
     volume = {29},
     number = {1},
     year = {2025},
     doi = {10.2140/gt.2025.29.313},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2025.29.313/}
}
TY  - JOUR
AU  - Detcherry, Renaud
AU  - Santharoubane, Ramanujan
TI  - An embedding of skein algebras of surfaces into localized quantum tori from Dehn–Thurston coordinates
JO  - Geometry & topology
PY  - 2025
SP  - 313
EP  - 348
VL  - 29
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2025.29.313/
DO  - 10.2140/gt.2025.29.313
ID  - GT_2025_29_1_a7
ER  - 
%0 Journal Article
%A Detcherry, Renaud
%A Santharoubane, Ramanujan
%T An embedding of skein algebras of surfaces into localized quantum tori from Dehn–Thurston coordinates
%J Geometry & topology
%D 2025
%P 313-348
%V 29
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2025.29.313/
%R 10.2140/gt.2025.29.313
%F GT_2025_29_1_a7
Detcherry, Renaud; Santharoubane, Ramanujan. An embedding of skein algebras of surfaces into localized quantum tori from Dehn–Thurston coordinates. Geometry & topology, Tome 29 (2025) no. 1, pp. 313-348. doi : 10.2140/gt.2025.29.313. http://geodesic.mathdoc.fr/articles/10.2140/gt.2025.29.313/

[1] C Blanchet, N Habegger, G Masbaum, P Vogel, Topological quantum field theories derived from the Kauffman bracket, Topology 34 (1995) 883 | DOI

[2] F Bonahon, X Liu, Representations of the quantum Teichmüller space and invariants of surface diffeomorphisms, Geom. Topol. 11 (2007) 889 | DOI

[3] F Bonahon, H Wong, Quantum traces for representations of surface groups in SL2(C), Geom. Topol. 15 (2011) 1569 | DOI

[4] F Bonahon, H Wong, Representations of the Kauffman bracket skein algebra, I : Invariants and miraculous cancellations, Invent. Math. 204 (2016) 195 | DOI

[5] F Bonahon, H Wong, Representations of the Kauffman bracket skein algebra, II : Punctured surfaces, Algebr. Geom. Topol. 17 (2017) 3399 | DOI

[6] F Bonahon, H Wong, Representations of the Kauffman bracket skein algebra, III : Closed surfaces and naturality, Quantum Topol. 10 (2019) 325 | DOI

[7] F Bonahon, H Wong, T Yang, Asymptotics of quantum invariants of surface diffeomorphisms, I: Conjecture and algebraic computations, preprint (2021)

[8] D Bullock, Rings of SL2(C)-characters and the Kauffman bracket skein module, Comment. Math. Helv. 72 (1997) 521 | DOI

[9] L Charles, J Marché, Multicurves and regular functions on the representation variety of a surface in SU(2), Comment. Math. Helv. 87 (2012) 409 | DOI

[10] R Detcherry, Asymptotic formulae for curve operators in TQFT, Geom. Topol. 20 (2016) 3057 | DOI

[11] R Detcherry, T Le Fils, R Santharoubane, Compatible pants decompositions for SL2(C)-representations of surface groups, Groups Geom. Dyn. (2024) | DOI

[12] C Frohman, R Gelca, Skein modules and the noncommutative torus, Trans. Amer. Math. Soc. 352 (2000) 4877 | DOI

[13] C Frohman, J Kania-Bartoszynska, T Lê, Unicity for representations of the Kauffman bracket skein algebra, Invent. Math. 215 (2019) 609 | DOI

[14] C Frohman, J Kania-Bartoszynska, T Lê, Dimension and trace of the Kauffman bracket skein algebra, Trans. Amer. Math. Soc. Ser. B 8 (2021) 510 | DOI

[15] I Ganev, D Jordan, P Safronov, The quantum Frobenius for character varieties and multiplicative quiver varieties, J. Eur. Math. Soc. (2024) | DOI

[16] P M Gilmer, G Masbaum, Integral lattices in TQFT, Ann. Sci. École Norm. Sup. 40 (2007) 815 | DOI

[17] T T Q Lê, Quantum Teichmüller spaces and quantum trace map, J. Inst. Math. Jussieu 18 (2019) 249 | DOI

[18] T T Q Lê, Faithfullness of geometric action of skein algebras, Acta Math. Vietnam. 47 (2022) 279 | DOI

[19] T T Q Lê, X Zhang, Character varieties, A-polynomials and the AJ conjecture, Algebr. Geom. Topol. 17 (2017) 157 | DOI

[20] J Marché, R Santharoubane, Asymptotics of quantum representations of surface groups, Ann. Sci. École Norm. Sup. 54 (2021) 1275 | DOI

[21] G Masbaum, P Vogel, 3-Valent graphs and the Kauffman bracket, Pacific J. Math. 164 (1994) 361 | DOI

[22] J H Przytycki, Skein modules of 3-manifolds, Bull. Polish Acad. Sci. Math. 39 (1991) 91

[23] J H Przytycki, A S Sikora, On skein algebras and Sl2(C)-character varieties, Topology 39 (2000) 115 | DOI

[24] R Santharoubane, Algebraic generators of the skein algebra of a surface, Algebr. Geom. Topol. 24 (2024) 2571 | DOI

[25] N Takenov, Representations of the Kauffman skein algebra of small surfaces, preprint (2015)

[26] V G Turaev, The Conway and Kauffman modules of a solid torus, Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. 167 (1988) 79

[27] V G Turaev, Skein quantization of Poisson algebras of loops on surfaces, Ann. Sci. École Norm. Sup. 24 (1991) 635 | DOI

Cité par Sources :