Hyperbolic hyperbolic-by-cyclic groups are cubulable
Geometry & topology, Tome 29 (2025) no. 1, pp. 259-268.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

We show that the mapping torus of a hyperbolic group by a hyperbolic automorphism is cubulable. Along the way, we give an alternate proof of Hagen and Wise’s theorem that hyperbolic free-by-cyclic groups are cubulable, and extend to the case with torsion Brinkmann’s thesis that a torsion-free hyperbolic-by-cyclic group is hyperbolic if and only if it does not contain 2-subgroups.

DOI : 10.2140/gt.2025.29.259
Keywords: mapping torus, cubulation, CAT(0) cube complex, linear, hyperbolic groups, atoroidal

Dahmani, François 1 ; Meda Satish, Suraj Krishna 2 ; Mutanguha, Jean Pierre 3

1 IRL CRM-CNRS, Université de Montréal, Montreal, Canada, Institut Fourier, Laboratoire de Mathématiques, Université Grenoble Alpes, Grenoble, France
2 Department of Mathematics, Ashoka University, Haryana, India
3 Department of Mathematics, Princeton University, Princeton, NJ, United States
@article{GT_2025_29_1_a5,
     author = {Dahmani, Fran\c{c}ois and Meda Satish, Suraj Krishna and Mutanguha, Jean Pierre},
     title = {Hyperbolic hyperbolic-by-cyclic groups are cubulable},
     journal = {Geometry & topology},
     pages = {259--268},
     publisher = {mathdoc},
     volume = {29},
     number = {1},
     year = {2025},
     doi = {10.2140/gt.2025.29.259},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2025.29.259/}
}
TY  - JOUR
AU  - Dahmani, François
AU  - Meda Satish, Suraj Krishna
AU  - Mutanguha, Jean Pierre
TI  - Hyperbolic hyperbolic-by-cyclic groups are cubulable
JO  - Geometry & topology
PY  - 2025
SP  - 259
EP  - 268
VL  - 29
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2025.29.259/
DO  - 10.2140/gt.2025.29.259
ID  - GT_2025_29_1_a5
ER  - 
%0 Journal Article
%A Dahmani, François
%A Meda Satish, Suraj Krishna
%A Mutanguha, Jean Pierre
%T Hyperbolic hyperbolic-by-cyclic groups are cubulable
%J Geometry & topology
%D 2025
%P 259-268
%V 29
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2025.29.259/
%R 10.2140/gt.2025.29.259
%F GT_2025_29_1_a5
Dahmani, François; Meda Satish, Suraj Krishna; Mutanguha, Jean Pierre. Hyperbolic hyperbolic-by-cyclic groups are cubulable. Geometry & topology, Tome 29 (2025) no. 1, pp. 259-268. doi : 10.2140/gt.2025.29.259. http://geodesic.mathdoc.fr/articles/10.2140/gt.2025.29.259/

[1] I Agol, The virtual Haken conjecture, Doc. Math. 18 (2013) 1045 | DOI

[2] Y Antolín, A Minasyan, Tits alternatives for graph products, J. Reine Angew. Math. 704 (2015) 55 | DOI

[3] N Bergeron, D T Wise, A boundary criterion for cubulation, Amer. J. Math. 134 (2012) 843 | DOI

[4] M Bestvina, M Feighn, Stable actions of groups on real trees, Invent. Math. 121 (1995) 287 | DOI

[5] M Bestvina, M Handel, Train tracks and automorphisms of free groups, Ann. of Math. 135 (1992) 1 | DOI

[6] M Bestvina, M Feighn, M Handel, Laminations, trees, and irreducible automorphisms of free groups, Geom. Funct. Anal. 7 (1997) 215 | DOI

[7] B H Bowditch, Cut points and canonical splittings of hyperbolic groups, Acta Math. 180 (1998) 145 | DOI

[8] P Brinkmann, Mapping tori of automorphisms of hyperbolic groups, PhD thesis, University of Utah (2000)

[9] D Cooper, D D Long, A W Reid, Bundles and finite foliations, Invent. Math. 118 (1994) 255 | DOI

[10] F Dahmani, R Li, Relative hyperbolicity for automorphisms of free products and free groups, J. Topol. Anal. 14 (2022) 55 | DOI

[11] F Dahmani, S K Meda Satish, Cubulating a free-product-by-cyclic group, (2022)

[12] S Douba, B Fléchelles, T Weisman, F Zhu, Cubulated hyperbolic groups admit Anosov representations, preprint (2023)

[13] G Dufour, Cubulations de variétés hyperboliques compactes, PhD thesis, Université Paris-Sud (2012)

[14] M J Dunwoody, The accessibility of finitely presented groups, Invent. Math. 81 (1985) 449 | DOI

[15] E Einstein, D Groves, Relative cubulations and groups with a 2-sphere boundary, Compos. Math. 156 (2020) 862 | DOI

[16] S Francaviglia, A Martino, Stretching factors, metrics and train tracks for free products, Illinois J. Math. 59 (2015) 859

[17] D Groves, J F Manning, Hyperbolic groups acting improperly, Geom. Topol. 27 (2023) 3387 | DOI

[18] M F Hagen, D T Wise, Cubulating hyperbolic free-by-cyclic groups: the general case, Geom. Funct. Anal. 25 (2015) 134 | DOI

[19] M F Hagen, D T Wise, Cubulating hyperbolic free-by-cyclic groups: the irreducible case, Duke Math. J. 165 (2016) 1753 | DOI

[20] F Haglund, D T Wise, Special cube complexes, Geom. Funct. Anal. 17 (2008) 1551 | DOI

[21] C Horbez, The boundary of the outer space of a free product, Israel J. Math. 221 (2017) 179 | DOI

[22] T Hsu, D T Wise, Cubulating malnormal amalgams, Invent. Math. 199 (2015) 293 | DOI

[23] J Kahn, V Markovic, Immersing almost geodesic surfaces in a closed hyperbolic three manifold, Ann. of Math. 175 (2012) 1127 | DOI

[24] A Karrass, A Pietrowski, D Solitar, Finite and infinite cyclic extensions of free groups, J. Austral. Math. Soc. 16 (1973) 458 | DOI

[25] A Martino, A proof that all Seifert 3-manifold groups and all virtual surface groups are conjugacy separable, J. Algebra 313 (2007) 773 | DOI

[26] A Minasyan, P Zalesskii, Virtually compact special hyperbolic groups are conjugacy separable, Comment. Math. Helv. 91 (2016) 609 | DOI

[27] M Mitra, Cannon–Thurston maps for hyperbolic group extensions, Topology 37 (1998) 527 | DOI

[28] J Nielsen, Die Isomorphismen der allgemeinen, unendlichen Gruppe mit zwei Erzeugenden, Math. Ann. 78 (1917) 385 | DOI

[29] M R Pettet, Virtually free groups with finitely many outer automorphisms, Trans. Amer. Math. Soc. 349 (1997) 4565 | DOI

[30] Z Sela, Structure and rigidity in (Gromov) hyperbolic groups and discrete groups in rank 1 Lie groups, II, Geom. Funct. Anal. 7 (1997) 561 | DOI

[31] J Stallings, Group theory and three-dimensional manifolds, 4, Yale Univ. Press (1971)

[32] W P Thurston, Three-dimensional manifolds, Kleinian groups and hyperbolic geometry, Bull. Amer. Math. Soc. 6 (1982) 357 | DOI

[33] D T Wise, The structure of groups with a quasiconvex hierarchy, 209, Princeton Univ. Press (2021)

Cité par Sources :