Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
We show that the mapping torus of a hyperbolic group by a hyperbolic automorphism is cubulable. Along the way, we give an alternate proof of Hagen and Wise’s theorem that hyperbolic free-by-cyclic groups are cubulable, and extend to the case with torsion Brinkmann’s thesis that a torsion-free hyperbolic-by-cyclic group is hyperbolic if and only if it does not contain -subgroups.
Dahmani, François 1 ; Meda Satish, Suraj Krishna 2 ; Mutanguha, Jean Pierre 3
@article{GT_2025_29_1_a5, author = {Dahmani, Fran\c{c}ois and Meda Satish, Suraj Krishna and Mutanguha, Jean Pierre}, title = {Hyperbolic hyperbolic-by-cyclic groups are cubulable}, journal = {Geometry & topology}, pages = {259--268}, publisher = {mathdoc}, volume = {29}, number = {1}, year = {2025}, doi = {10.2140/gt.2025.29.259}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2025.29.259/} }
TY - JOUR AU - Dahmani, François AU - Meda Satish, Suraj Krishna AU - Mutanguha, Jean Pierre TI - Hyperbolic hyperbolic-by-cyclic groups are cubulable JO - Geometry & topology PY - 2025 SP - 259 EP - 268 VL - 29 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/gt.2025.29.259/ DO - 10.2140/gt.2025.29.259 ID - GT_2025_29_1_a5 ER -
%0 Journal Article %A Dahmani, François %A Meda Satish, Suraj Krishna %A Mutanguha, Jean Pierre %T Hyperbolic hyperbolic-by-cyclic groups are cubulable %J Geometry & topology %D 2025 %P 259-268 %V 29 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.2140/gt.2025.29.259/ %R 10.2140/gt.2025.29.259 %F GT_2025_29_1_a5
Dahmani, François; Meda Satish, Suraj Krishna; Mutanguha, Jean Pierre. Hyperbolic hyperbolic-by-cyclic groups are cubulable. Geometry & topology, Tome 29 (2025) no. 1, pp. 259-268. doi : 10.2140/gt.2025.29.259. http://geodesic.mathdoc.fr/articles/10.2140/gt.2025.29.259/
[1] The virtual Haken conjecture, Doc. Math. 18 (2013) 1045 | DOI
,[2] Tits alternatives for graph products, J. Reine Angew. Math. 704 (2015) 55 | DOI
, ,[3] A boundary criterion for cubulation, Amer. J. Math. 134 (2012) 843 | DOI
, ,[4] Stable actions of groups on real trees, Invent. Math. 121 (1995) 287 | DOI
, ,[5] Train tracks and automorphisms of free groups, Ann. of Math. 135 (1992) 1 | DOI
, ,[6] Laminations, trees, and irreducible automorphisms of free groups, Geom. Funct. Anal. 7 (1997) 215 | DOI
, , ,[7] Cut points and canonical splittings of hyperbolic groups, Acta Math. 180 (1998) 145 | DOI
,[8] Mapping tori of automorphisms of hyperbolic groups, PhD thesis, University of Utah (2000)
,[9] Bundles and finite foliations, Invent. Math. 118 (1994) 255 | DOI
, , ,[10] Relative hyperbolicity for automorphisms of free products and free groups, J. Topol. Anal. 14 (2022) 55 | DOI
, ,[11] Cubulating a free-product-by-cyclic group, (2022)
, ,[12] Cubulated hyperbolic groups admit Anosov representations, preprint (2023)
, , , ,[13] Cubulations de variétés hyperboliques compactes, PhD thesis, Université Paris-Sud (2012)
,[14] The accessibility of finitely presented groups, Invent. Math. 81 (1985) 449 | DOI
,[15] Relative cubulations and groups with a 2-sphere boundary, Compos. Math. 156 (2020) 862 | DOI
, ,[16] Stretching factors, metrics and train tracks for free products, Illinois J. Math. 59 (2015) 859
, ,[17] Hyperbolic groups acting improperly, Geom. Topol. 27 (2023) 3387 | DOI
, ,[18] Cubulating hyperbolic free-by-cyclic groups: the general case, Geom. Funct. Anal. 25 (2015) 134 | DOI
, ,[19] Cubulating hyperbolic free-by-cyclic groups: the irreducible case, Duke Math. J. 165 (2016) 1753 | DOI
, ,[20] Special cube complexes, Geom. Funct. Anal. 17 (2008) 1551 | DOI
, ,[21] The boundary of the outer space of a free product, Israel J. Math. 221 (2017) 179 | DOI
,[22] Cubulating malnormal amalgams, Invent. Math. 199 (2015) 293 | DOI
, ,[23] Immersing almost geodesic surfaces in a closed hyperbolic three manifold, Ann. of Math. 175 (2012) 1127 | DOI
, ,[24] Finite and infinite cyclic extensions of free groups, J. Austral. Math. Soc. 16 (1973) 458 | DOI
, , ,[25] A proof that all Seifert 3-manifold groups and all virtual surface groups are conjugacy separable, J. Algebra 313 (2007) 773 | DOI
,[26] Virtually compact special hyperbolic groups are conjugacy separable, Comment. Math. Helv. 91 (2016) 609 | DOI
, ,[27] Cannon–Thurston maps for hyperbolic group extensions, Topology 37 (1998) 527 | DOI
,[28] Die Isomorphismen der allgemeinen, unendlichen Gruppe mit zwei Erzeugenden, Math. Ann. 78 (1917) 385 | DOI
,[29] Virtually free groups with finitely many outer automorphisms, Trans. Amer. Math. Soc. 349 (1997) 4565 | DOI
,[30] Structure and rigidity in (Gromov) hyperbolic groups and discrete groups in rank 1 Lie groups, II, Geom. Funct. Anal. 7 (1997) 561 | DOI
,[31] Group theory and three-dimensional manifolds, 4, Yale Univ. Press (1971)
,[32] Three-dimensional manifolds, Kleinian groups and hyperbolic geometry, Bull. Amer. Math. Soc. 6 (1982) 357 | DOI
,[33] The structure of groups with a quasiconvex hierarchy, 209, Princeton Univ. Press (2021)
,Cité par Sources :