Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
Let be a curve of genus . A fundamental problem in the theory of algebraic curves is to understand maps of specified degree . When is general, the moduli space of such maps is well understood by the main theorems of Brill–Noether theory. Despite much study over the past three decades, a similarly complete picture has proved elusive for curves of fixed gonality. Here we complete such a picture, by proving analogs of all of the main theorems of Brill–Noether theory in this setting. As a corollary, we prove a conjecture of Eisenbud and Schreyer regarding versal deformation spaces of vector bundles on .
Larson, Eric 1 ; Larson, Hannah 2 ; Vogt, Isabel 1
@article{GT_2025_29_1_a4, author = {Larson, Eric and Larson, Hannah and Vogt, Isabel}, title = {Global {Brill{\textendash}Noether} theory over the {Hurwitz} space}, journal = {Geometry & topology}, pages = {193--257}, publisher = {mathdoc}, volume = {29}, number = {1}, year = {2025}, doi = {10.2140/gt.2025.29.193}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2025.29.193/} }
TY - JOUR AU - Larson, Eric AU - Larson, Hannah AU - Vogt, Isabel TI - Global Brill–Noether theory over the Hurwitz space JO - Geometry & topology PY - 2025 SP - 193 EP - 257 VL - 29 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/gt.2025.29.193/ DO - 10.2140/gt.2025.29.193 ID - GT_2025_29_1_a4 ER -
Larson, Eric; Larson, Hannah; Vogt, Isabel. Global Brill–Noether theory over the Hurwitz space. Geometry & topology, Tome 29 (2025) no. 1, pp. 193-257. doi : 10.2140/gt.2025.29.193. http://geodesic.mathdoc.fr/articles/10.2140/gt.2025.29.193/
[1] On linear series on general k-gonal projective curves, Proc. Amer. Math. Soc. 124 (1996) 7 | DOI
, ,[2] Schubert polynomials for the classical groups, J. Amer. Math. Soc. 8 (1995) 443 | DOI
, ,[3] Combinatorics of Coxeter groups, 231, Springer (2005) | DOI
, ,[4] Petri map for vector bundles near good bundles, J. Pure Appl. Algebra 222 (2018) 1692 | DOI
, , ,[5] On the classification of loci, Philos. Trans. Roy. Soc. Lond. 169 (1878) 663 | DOI
,[6] Components of Brill–Noether loci for curves with fixed gonality, Michigan Math. J. 71 (2022) 19 | DOI
, ,[7] Tropical methods in Hurwitz–Brill–Noether theory, Adv. Math. 398 (2022) 108199 | DOI
, ,[8] Linear series on a general k-gonal curve, Abh. Math. Sem. Univ. Hamburg 69 (1999) 347 | DOI
, ,[9] Linear series on 4-gonal curves, Math. Nachr. 213 (2000) 35 | DOI
, ,[10] On the varieties of special divisors, Indag. Math. 13 (2002) 29 | DOI
, ,[11] The primitive length of a general k-gonal curve, Indag. Math. 5 (1994) 145 | DOI
, , ,[12] Éléments de géométrie algébrique, IV : Étude locale des schémas et des morphismes de schémas, III, Inst. Hautes Études Sci. Publ. Math. 28 (1966) 5
,[13] Commutative algebra: with a view toward algebraic geometry, 150, Springer (1995) | DOI
,[14] Limit linear series: basic theory, Invent. Math. 85 (1986) 337 | DOI
, ,[15] Irreducibility and monodromy of some families of linear series, Ann. Sci. École Norm. Sup. 20 (1987) 65 | DOI
, ,[16] Relative Beilinson monad and direct image for families of coherent sheaves, Trans. Amer. Math. Soc. 360 (2008) 5367 | DOI
, ,[17] Reduced words in affine Coxeter groups, Discrete Math. 157 (1996) 127 | DOI
,[18] Schubert varieties and short braidedness, Transform. Groups 3 (1998) 51 | DOI
,[19] Nilpotent orbits and commutative elements, J. Algebra 196 (1997) 490 | DOI
, ,[20] Hurwitz schemes and irreducibility of moduli of algebraic curves, Ann. of Math. 90 (1969) 542 | DOI
,[21] On the connectedness of degeneracy loci and special divisors, Acta Math. 146 (1981) 271 | DOI
, ,[22] Stable curves and special divisors : Petri’s conjecture, Invent. Math. 66 (1982) 251 | DOI
,[23] On the variety of special linear systems on a general algebraic curve, Duke Math. J. 47 (1980) 233
, ,[24] Dual equivalence with applications, including a conjecture of Proctor, Discrete Math. 99 (1992) 79 | DOI
,[25] On the Kodaira dimension of the moduli space of curves, Invent. Math. 67 (1982) 23 | DOI
, ,[26] Cohen–Macaulay varieties, geometric complexes, and combinatorics, from: "The mathematical legacy of Richard P Stanley" (editors P Hersh, T Lam, P Pylyavskyy, V Reiner), Amer. Math. Soc. (2016) 219 | DOI
,[27] Tropical independence, I : Shapes of divisors and a proof of the Gieseker–Petri theorem, Algebra Number Theory 8 (2014) 2043 | DOI
, ,[28] Brill–Noether theory for curves of a fixed gonality, Forum Math. Pi 9 (2021) | DOI
, ,[29] Schubert methods with an application to algebraic curves, technical report (1971)
,[30] On the existence of special divisors, Amer. J. Math. 94 (1972) 431 | DOI
, ,[31] k-Schur functions and affine Schubert calculus, 33, Springer (2014) | DOI
, , , , , ,[32] Tableaux on k+1-cores, reduced words for affine permutations, and k-Schur expansions, J. Combin. Theory Ser. A 112 (2005) 44 | DOI
, ,[33] Refined Brill–Noether theory for all trigonal curves, Eur. J. Math. 7 (2021) 1524 | DOI
,[34] A refined Brill–Noether theory over Hurwitz spaces, Invent. Math. 224 (2021) 767 | DOI
,[35] Universal degeneracy classes for vector bundles on P1 bundles, Adv. Math. 380 (2021) 107563 | DOI
,[36] Ordering the affine symmetric group, from: "Algebraic combinatorics and applications" (editors A Betten, A Kohnert, R Laue, A Wassermann), Springer (2001) 219 | DOI
,[37] Brill–Noether–Petri without degenerations, J. Differential Geom. 23 (1986) 299
,[38] Reduction and lifting of finite covers of curves, from: "Proceedings of the 2003 Workshop on Cryptography and Related Mathematics", Chuo Univ. (2003) 161
,[39] Le serie lineari speciali sulle curve trigonali, Ann. Mat. Pura Appl. 25 (1946) 343 | DOI
,[40] On curves of odd gonality, Arch. Math. (Basel) 67 (1996) 80 | DOI
,[41] Line bundles and syzygies of trigonal curves, Abh. Math. Sem. Univ. Hamburg 56 (1986) 169 | DOI
, ,[42] A simple characteristic-free proof of the Brill–Noether theorem, Bull. Braz. Math. Soc. 45 (2014) 807 | DOI
,[43] Connectedness of Brill–Noether loci via degenerations, Int. Math. Res. Not. 2019 (2019) 6162 | DOI
,[44] On the variety of special linear series on a general 5-gonal curve, Abh. Math. Sem. Univ. Hamburg 72 (2002) 283 | DOI
,[45] Brill–Noether varieties of k-gonal curves, Adv. Math. 312 (2017) 46 | DOI
,[46] Grundlagen für eine allgemeine Theorie der Funkctionen einer veränderlichen complexen Größe, PhD thesis, Georg-August-Universität Göttingen (1851)
,[47] On the number of reduced decompositions of elements of Coxeter groups, Eur. J. Combin. 5 (1984) 359 | DOI
,[48] On the fully commutative elements of Coxeter groups, J. Algebraic Combin. 5 (1996) 353 | DOI
,[49] Some combinatorial aspects of reduced words in finite Coxeter groups, Trans. Amer. Math. Soc. 349 (1997) 1285 | DOI
,[50] The enumeration of fully commutative elements of Coxeter groups, J. Algebraic Combin. 7 (1998) 291 | DOI
,Cité par Sources :