Global Brill–Noether theory over the Hurwitz space
Geometry & topology, Tome 29 (2025) no. 1, pp. 193-257.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

Let C be a curve of genus g. A fundamental problem in the theory of algebraic curves is to understand maps C r of specified degree d. When C is general, the moduli space of such maps is well understood by the main theorems of Brill–Noether theory. Despite much study over the past three decades, a similarly complete picture has proved elusive for curves of fixed gonality. Here we complete such a picture, by proving analogs of all of the main theorems of Brill–Noether theory in this setting. As a corollary, we prove a conjecture of Eisenbud and Schreyer regarding versal deformation spaces of vector bundles on 1.

DOI : 10.2140/gt.2025.29.193
Keywords: Brill–Noether theory, Hurwitz space

Larson, Eric 1 ; Larson, Hannah 2 ; Vogt, Isabel 1

1 Department of Mathematics, Brown University, Providence, RI, United States
2 Department of Mathematics, University of California, Berkeley, Berkeley, CA, United States
@article{GT_2025_29_1_a4,
     author = {Larson, Eric and Larson, Hannah and Vogt, Isabel},
     title = {Global {Brill{\textendash}Noether} theory over the {Hurwitz} space},
     journal = {Geometry & topology},
     pages = {193--257},
     publisher = {mathdoc},
     volume = {29},
     number = {1},
     year = {2025},
     doi = {10.2140/gt.2025.29.193},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2025.29.193/}
}
TY  - JOUR
AU  - Larson, Eric
AU  - Larson, Hannah
AU  - Vogt, Isabel
TI  - Global Brill–Noether theory over the Hurwitz space
JO  - Geometry & topology
PY  - 2025
SP  - 193
EP  - 257
VL  - 29
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2025.29.193/
DO  - 10.2140/gt.2025.29.193
ID  - GT_2025_29_1_a4
ER  - 
%0 Journal Article
%A Larson, Eric
%A Larson, Hannah
%A Vogt, Isabel
%T Global Brill–Noether theory over the Hurwitz space
%J Geometry & topology
%D 2025
%P 193-257
%V 29
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2025.29.193/
%R 10.2140/gt.2025.29.193
%F GT_2025_29_1_a4
Larson, Eric; Larson, Hannah; Vogt, Isabel. Global Brill–Noether theory over the Hurwitz space. Geometry & topology, Tome 29 (2025) no. 1, pp. 193-257. doi : 10.2140/gt.2025.29.193. http://geodesic.mathdoc.fr/articles/10.2140/gt.2025.29.193/

[1] E Ballico, C Keem, On linear series on general k-gonal projective curves, Proc. Amer. Math. Soc. 124 (1996) 7 | DOI

[2] S Billey, M Haiman, Schubert polynomials for the classical groups, J. Amer. Math. Soc. 8 (1995) 443 | DOI

[3] A Björner, F Brenti, Combinatorics of Coxeter groups, 231, Springer (2005) | DOI

[4] A Castorena, A López Martín, M Teixidor I Bigas, Petri map for vector bundles near good bundles, J. Pure Appl. Algebra 222 (2018) 1692 | DOI

[5] W Clifford, On the classification of loci, Philos. Trans. Roy. Soc. Lond. 169 (1878) 663 | DOI

[6] K Cook-Powell, D Jensen, Components of Brill–Noether loci for curves with fixed gonality, Michigan Math. J. 71 (2022) 19 | DOI

[7] K Cook-Powell, D Jensen, Tropical methods in Hurwitz–Brill–Noether theory, Adv. Math. 398 (2022) 108199 | DOI

[8] M Coppens, G Martens, Linear series on a general k-gonal curve, Abh. Math. Sem. Univ. Hamburg 69 (1999) 347 | DOI

[9] M Coppens, G Martens, Linear series on 4-gonal curves, Math. Nachr. 213 (2000) 35 | DOI

[10] M Coppens, G Martens, On the varieties of special divisors, Indag. Math. 13 (2002) 29 | DOI

[11] M Coppens, C Keem, G Martens, The primitive length of a general k-gonal curve, Indag. Math. 5 (1994) 145 | DOI

[12] A Grothendieck, Éléments de géométrie algébrique, IV : Étude locale des schémas et des morphismes de schémas, III, Inst. Hautes Études Sci. Publ. Math. 28 (1966) 5

[13] D Eisenbud, Commutative algebra: with a view toward algebraic geometry, 150, Springer (1995) | DOI

[14] D Eisenbud, J Harris, Limit linear series: basic theory, Invent. Math. 85 (1986) 337 | DOI

[15] D Eisenbud, J Harris, Irreducibility and monodromy of some families of linear series, Ann. Sci. École Norm. Sup. 20 (1987) 65 | DOI

[16] D Eisenbud, F O Schreyer, Relative Beilinson monad and direct image for families of coherent sheaves, Trans. Amer. Math. Soc. 360 (2008) 5367 | DOI

[17] K Eriksson, Reduced words in affine Coxeter groups, Discrete Math. 157 (1996) 127 | DOI

[18] C K Fan, Schubert varieties and short braidedness, Transform. Groups 3 (1998) 51 | DOI

[19] C K Fan, J R Stembridge, Nilpotent orbits and commutative elements, J. Algebra 196 (1997) 490 | DOI

[20] W Fulton, Hurwitz schemes and irreducibility of moduli of algebraic curves, Ann. of Math. 90 (1969) 542 | DOI

[21] W Fulton, R Lazarsfeld, On the connectedness of degeneracy loci and special divisors, Acta Math. 146 (1981) 271 | DOI

[22] D Gieseker, Stable curves and special divisors : Petri’s conjecture, Invent. Math. 66 (1982) 251 | DOI

[23] P Griffiths, J Harris, On the variety of special linear systems on a general algebraic curve, Duke Math. J. 47 (1980) 233

[24] M D Haiman, Dual equivalence with applications, including a conjecture of Proctor, Discrete Math. 99 (1992) 79 | DOI

[25] J Harris, D Mumford, On the Kodaira dimension of the moduli space of curves, Invent. Math. 67 (1982) 23 | DOI

[26] M Hochster, Cohen–Macaulay varieties, geometric complexes, and combinatorics, from: "The mathematical legacy of Richard P Stanley" (editors P Hersh, T Lam, P Pylyavskyy, V Reiner), Amer. Math. Soc. (2016) 219 | DOI

[27] D Jensen, S Payne, Tropical independence, I : Shapes of divisors and a proof of the Gieseker–Petri theorem, Algebra Number Theory 8 (2014) 2043 | DOI

[28] D Jensen, D Ranganathan, Brill–Noether theory for curves of a fixed gonality, Forum Math. Pi 9 (2021) | DOI

[29] G Kempf, Schubert methods with an application to algebraic curves, technical report (1971)

[30] S L Kleiman, D Laksov, On the existence of special divisors, Amer. J. Math. 94 (1972) 431 | DOI

[31] T Lam, L Lapointe, J Morse, A Schilling, M Shimozono, M Zabrocki, k-Schur functions and affine Schubert calculus, 33, Springer (2014) | DOI

[32] L Lapointe, J Morse, Tableaux on k+1-cores, reduced words for affine permutations, and k-Schur expansions, J. Combin. Theory Ser. A 112 (2005) 44 | DOI

[33] H K Larson, Refined Brill–Noether theory for all trigonal curves, Eur. J. Math. 7 (2021) 1524 | DOI

[34] H K Larson, A refined Brill–Noether theory over Hurwitz spaces, Invent. Math. 224 (2021) 767 | DOI

[35] H K Larson, Universal degeneracy classes for vector bundles on P1 bundles, Adv. Math. 380 (2021) 107563 | DOI

[36] A Lascoux, Ordering the affine symmetric group, from: "Algebraic combinatorics and applications" (editors A Betten, A Kohnert, R Laue, A Wassermann), Springer (2001) 219 | DOI

[37] R Lazarsfeld, Brill–Noether–Petri without degenerations, J. Differential Geom. 23 (1986) 299

[38] Q Liu, Reduction and lifting of finite covers of curves, from: "Proceedings of the 2003 Workshop on Cryptography and Related Mathematics", Chuo Univ. (2003) 161

[39] A Maroni, Le serie lineari speciali sulle curve trigonali, Ann. Mat. Pura Appl. 25 (1946) 343 | DOI

[40] G Martens, On curves of odd gonality, Arch. Math. (Basel) 67 (1996) 80 | DOI

[41] G Martens, F O Schreyer, Line bundles and syzygies of trigonal curves, Abh. Math. Sem. Univ. Hamburg 56 (1986) 169 | DOI

[42] B Osserman, A simple characteristic-free proof of the Brill–Noether theorem, Bull. Braz. Math. Soc. 45 (2014) 807 | DOI

[43] B Osserman, Connectedness of Brill–Noether loci via degenerations, Int. Math. Res. Not. 2019 (2019) 6162 | DOI

[44] S S Park, On the variety of special linear series on a general 5-gonal curve, Abh. Math. Sem. Univ. Hamburg 72 (2002) 283 | DOI

[45] N Pflueger, Brill–Noether varieties of k-gonal curves, Adv. Math. 312 (2017) 46 | DOI

[46] B Riemann, Grundlagen für eine allgemeine Theorie der Funkctionen einer veränderlichen complexen Größe, PhD thesis, Georg-August-Universität Göttingen (1851)

[47] R P Stanley, On the number of reduced decompositions of elements of Coxeter groups, Eur. J. Combin. 5 (1984) 359 | DOI

[48] J R Stembridge, On the fully commutative elements of Coxeter groups, J. Algebraic Combin. 5 (1996) 353 | DOI

[49] J R Stembridge, Some combinatorial aspects of reduced words in finite Coxeter groups, Trans. Amer. Math. Soc. 349 (1997) 1285 | DOI

[50] J R Stembridge, The enumeration of fully commutative elements of Coxeter groups, J. Algebraic Combin. 7 (1998) 291 | DOI

Cité par Sources :