Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
We study the antipodal subsets of the full flag manifolds . As a consequence, for natural numbers such that and , we show that Borel Anosov subgroups of are virtually isomorphic to either a free group or the fundamental group of a closed hyperbolic surface. This gives a partial answer to a question asked by Andrés Sambarino. Furthermore, we show restrictions on the hyperbolic spaces admitting uniformly regular quasi-isometric embeddings into the symmetric space of .
Dey, Subhadip 1
@article{GT_2025_29_1_a3, author = {Dey, Subhadip}, title = {On {Borel} {Anosov} subgroups of {SL(d,} {\ensuremath{\mathbb{R}})}}, journal = {Geometry & topology}, pages = {171--192}, publisher = {mathdoc}, volume = {29}, number = {1}, year = {2025}, doi = {10.2140/gt.2025.29.171}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2025.29.171/} }
Dey, Subhadip. On Borel Anosov subgroups of SL(d, ℝ). Geometry & topology, Tome 29 (2025) no. 1, pp. 171-192. doi : 10.2140/gt.2025.29.171. http://geodesic.mathdoc.fr/articles/10.2140/gt.2025.29.171/
[1] Parametrizations of canonical bases and totally positive matrices, Adv. Math. 122 (1996) 49 | DOI
, , ,[2] Anosov representations and dominated splittings, J. Eur. Math. Soc. 21 (2019) 3343 | DOI
, , ,[3] Quasi-hyperbolic planes in hyperbolic groups, Proc. Amer. Math. Soc. 133 (2005) 2491 | DOI
, ,[4] Topological restrictions on Anosov representations, J. Topol. 13 (2020) 1497 | DOI
, ,[5] Restrictions on Anosov subgroups of Sp(2n, R), Trans. Amer. Math. Soc. 277 (2024) 6863 | DOI
, , ,[6] Klein–Maskit combination theorem for Anosov subgroups : free products, Math. Z. 305 (2023) 35 | DOI
, ,[7] A combination theorem for Anosov subgroups, Math. Z. 293 (2019) 551 | DOI
, , ,[8] Temperedness of L2(Γ ∖G) and positive eigenfunctions in higher rank, Commun. Am. Math. Soc. 3 (2023) 744 | DOI
, ,[9] Moduli spaces of local systems and higher Teichmüller theory, Publ. Math. Inst. Hautes Études Sci. 103 (2006) 1 | DOI
, ,[10] Anosov representations: domains of discontinuity and applications, Invent. Math. 190 (2012) 357 | DOI
, ,[11] Ergodicity of harmonic invariant measures for the geodesic flow on hyperbolic spaces, J. Reine Angew. Math. 455 (1994) 57 | DOI
,[12] Boundaries of hyperbolic groups, from: "Combinatorial and geometric group theory", Contemp. Math. 296, Amer. Math. Soc. (2002) 39 | DOI
, ,[13] Discrete isometry groups of symmetric spaces, from: "Handbook of group actions, IV", Adv. Lect. Math. 41, International (2018) 191
, ,[14] Anosov subgroups: dynamical and geometric characterizations, Eur. J. Math. 3 (2017) 808 | DOI
, , ,[15] A Morse lemma for quasigeodesics in symmetric spaces and Euclidean buildings, Geom. Topol. 22 (2018) 3827 | DOI
, , ,[16] Anosov flows, surface groups and curves in projective space, Invent. Math. 165 (2006) 51 | DOI
,[17] Total positivity in reductive groups, from: "Lie theory and geometry", Progr. Math. 123, Birkhäuser (1994) 531 | DOI
,[18] On projective Anosov subgroups of symplectic groups, Bull. Lond. Math. Soc. 56 (2024) 581 | DOI
, ,[19] Connected components in the intersection of two open opposite Schubert cells in SLn(R)∕B, Int. Math. Res. Not. 1997 (1997) 469 | DOI
, , ,[20] Skew-symmetric vanishing lattices and intersections of Schubert cells, Int. Math. Res. Not. 1998 (1998) 563 | DOI
, , ,[21] On the cut point conjecture, Electron. Res. Announc. Amer. Math. Soc. 2 (1996) 98 | DOI
,[22] On Borel Anosov representations in even dimensions, Comment. Math. Helv. 95 (2020) 749 | DOI
,Cité par Sources :