On Borel Anosov subgroups of SL(d, ℝ)
Geometry & topology, Tome 29 (2025) no. 1, pp. 171-192.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

We study the antipodal subsets of the full flag manifolds (d). As a consequence, for natural numbers d 2 such that d5 and d0,±1 mod 8, we show that Borel Anosov subgroups of SL(d, ) are virtually isomorphic to either a free group or the fundamental group of a closed hyperbolic surface. This gives a partial answer to a question asked by Andrés Sambarino. Furthermore, we show restrictions on the hyperbolic spaces admitting uniformly regular quasi-isometric embeddings into the symmetric space Xd of SL(d, ).

DOI : 10.2140/gt.2025.29.171
Keywords: Anosov representations, flag manifolds

Dey, Subhadip 1

1 Department of Mathematics, Yale University, New Haven, CT, United States
@article{GT_2025_29_1_a3,
     author = {Dey, Subhadip},
     title = {On {Borel} {Anosov} subgroups of {SL(d,} {\ensuremath{\mathbb{R}})}},
     journal = {Geometry & topology},
     pages = {171--192},
     publisher = {mathdoc},
     volume = {29},
     number = {1},
     year = {2025},
     doi = {10.2140/gt.2025.29.171},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2025.29.171/}
}
TY  - JOUR
AU  - Dey, Subhadip
TI  - On Borel Anosov subgroups of SL(d, ℝ)
JO  - Geometry & topology
PY  - 2025
SP  - 171
EP  - 192
VL  - 29
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2025.29.171/
DO  - 10.2140/gt.2025.29.171
ID  - GT_2025_29_1_a3
ER  - 
%0 Journal Article
%A Dey, Subhadip
%T On Borel Anosov subgroups of SL(d, ℝ)
%J Geometry & topology
%D 2025
%P 171-192
%V 29
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2025.29.171/
%R 10.2140/gt.2025.29.171
%F GT_2025_29_1_a3
Dey, Subhadip. On Borel Anosov subgroups of SL(d, ℝ). Geometry & topology, Tome 29 (2025) no. 1, pp. 171-192. doi : 10.2140/gt.2025.29.171. http://geodesic.mathdoc.fr/articles/10.2140/gt.2025.29.171/

[1] A Berenstein, S Fomin, A Zelevinsky, Parametrizations of canonical bases and totally positive matrices, Adv. Math. 122 (1996) 49 | DOI

[2] J Bochi, R Potrie, A Sambarino, Anosov representations and dominated splittings, J. Eur. Math. Soc. 21 (2019) 3343 | DOI

[3] M Bonk, B Kleiner, Quasi-hyperbolic planes in hyperbolic groups, Proc. Amer. Math. Soc. 133 (2005) 2491 | DOI

[4] R Canary, K Tsouvalas, Topological restrictions on Anosov representations, J. Topol. 13 (2020) 1497 | DOI

[5] S Dey, Z Greenberg, J M Riestenberg, Restrictions on Anosov subgroups of Sp(2n, R), Trans. Amer. Math. Soc. 277 (2024) 6863 | DOI

[6] S Dey, M Kapovich, Klein–Maskit combination theorem for Anosov subgroups : free products, Math. Z. 305 (2023) 35 | DOI

[7] S Dey, M Kapovich, B Leeb, A combination theorem for Anosov subgroups, Math. Z. 293 (2019) 551 | DOI

[8] S Edwards, H Oh, Temperedness of L2(Γ ∖G) and positive eigenfunctions in higher rank, Commun. Am. Math. Soc. 3 (2023) 744 | DOI

[9] V Fock, A Goncharov, Moduli spaces of local systems and higher Teichmüller theory, Publ. Math. Inst. Hautes Études Sci. 103 (2006) 1 | DOI

[10] O Guichard, A Wienhard, Anosov representations: domains of discontinuity and applications, Invent. Math. 190 (2012) 357 | DOI

[11] V A Kaimanovich, Ergodicity of harmonic invariant measures for the geodesic flow on hyperbolic spaces, J. Reine Angew. Math. 455 (1994) 57 | DOI

[12] I Kapovich, N Benakli, Boundaries of hyperbolic groups, from: "Combinatorial and geometric group theory", Contemp. Math. 296, Amer. Math. Soc. (2002) 39 | DOI

[13] M Kapovich, B Leeb, Discrete isometry groups of symmetric spaces, from: "Handbook of group actions, IV", Adv. Lect. Math. 41, International (2018) 191

[14] M Kapovich, B Leeb, J Porti, Anosov subgroups: dynamical and geometric characterizations, Eur. J. Math. 3 (2017) 808 | DOI

[15] M Kapovich, B Leeb, J Porti, A Morse lemma for quasigeodesics in symmetric spaces and Euclidean buildings, Geom. Topol. 22 (2018) 3827 | DOI

[16] F Labourie, Anosov flows, surface groups and curves in projective space, Invent. Math. 165 (2006) 51 | DOI

[17] G Lusztig, Total positivity in reductive groups, from: "Lie theory and geometry", Progr. Math. 123, Birkhäuser (1994) 531 | DOI

[18] M B Pozzetti, K Tsouvalas, On projective Anosov subgroups of symplectic groups, Bull. Lond. Math. Soc. 56 (2024) 581 | DOI

[19] B Shapiro, M Shapiro, A Vainshtein, Connected components in the intersection of two open opposite Schubert cells in SLn(R)∕B, Int. Math. Res. Not. 1997 (1997) 469 | DOI

[20] B Shapiro, M Shapiro, A Vainshtein, Skew-symmetric vanishing lattices and intersections of Schubert cells, Int. Math. Res. Not. 1998 (1998) 563 | DOI

[21] G A Swarup, On the cut point conjecture, Electron. Res. Announc. Amer. Math. Soc. 2 (1996) 98 | DOI

[22] K Tsouvalas, On Borel Anosov representations in even dimensions, Comment. Math. Helv. 95 (2020) 749 | DOI

Cité par Sources :