Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
We prove that exterior powers of (skew-)symmetric bundles induce a -ring structure on the ring , when is a scheme where is invertible. Using this structure, we define stable Adams operations on Hermitian -theory. As a byproduct of our methods, we also compute the ternary laws associated to Hermitian -theory.
Fasel, Jean 1 ; Haution, Olivier 2
@article{GT_2025_29_1_a2, author = {Fasel, Jean and Haution, Olivier}, title = {The stable {Adams} operations on {Hermitian} {K-theory}}, journal = {Geometry & topology}, pages = {127--169}, publisher = {mathdoc}, volume = {29}, number = {1}, year = {2025}, doi = {10.2140/gt.2025.29.127}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2025.29.127/} }
TY - JOUR AU - Fasel, Jean AU - Haution, Olivier TI - The stable Adams operations on Hermitian K-theory JO - Geometry & topology PY - 2025 SP - 127 EP - 169 VL - 29 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/gt.2025.29.127/ DO - 10.2140/gt.2025.29.127 ID - GT_2025_29_1_a2 ER -
Fasel, Jean; Haution, Olivier. The stable Adams operations on Hermitian K-theory. Geometry & topology, Tome 29 (2025) no. 1, pp. 127-169. doi : 10.2140/gt.2025.29.127. http://geodesic.mathdoc.fr/articles/10.2140/gt.2025.29.127/
[1] Vector fields on spheres, Ann. of Math. 75 (1962) 603 | DOI
,[2] Stable operations and cooperations in derived Witt theory with rational coefficients, Ann. -Theory 2 (2017) 517 | DOI
,[3] Smooth models of motivic spheres and the clutching construction, Int. Math. Res. Not. 2017 (2017) 1890 | DOI
, , ,[4] Group representations, λ-rings and the J-homomorphism, Topology 8 (1969) 253 | DOI
, ,[5] Motivic and real étale stable homotopy theory, Compos. Math. 154 (2018) 883 | DOI
,[6] η-periodic motivic stable homotopy theory over fields, preprint (2020)
, ,[7] Witt groups, from: "Handbook of -theory, II" (editors E M Friedlander, D R Grayson), Springer (2005) 539 | DOI
,[8] A Gersten–Witt spectral sequence for regular schemes, Ann. Sci. École Norm. Sup. 35 (2002) 127 | DOI
, ,[9] Généralités sur les λ-anneaux, from: "Théorie des intersections et théorème de Riemann–Roch (SGA 6)", Lecture Notes in Math. 225, Springer (1971) 297
,[10] Le K∙ d’un fibre projectif : calculs et conséquences, from: "Théorie des intersections et théorème de Riemann–Roch (SGA 6)", Lecture Notes in Math. 225, Springer (1971) 365
,[11] Algèbre, Chapitres I–III, Hermann (1970)
,[12] Hermitian K-theory for stable ∞-categories, II : Cobordism categories and additivity, preprint (2020)
, , , , , , , , ,[13] Hermitian K-theory for stable ∞-categories, III : Grothendieck–Witt groups of rings, preprint (2020)
, , , , , , , , ,[14] Hermitian K-theory for stable ∞-categories, I : Foundations, Selecta Math. 29 (2023) 10 | DOI
, , , , , , , , ,[15] The Borel character, J. Inst. Math. Jussieu 22 (2023) 747 | DOI
, ,[16] A vanishing theorem for oriented intersection multiplicities, Math. Res. Lett. 15 (2008) 447 | DOI
, ,[17] Intersection theory using Adams operations, Invent. Math. 90 (1987) 243 | DOI
, ,[18] Motivic symmetric spectra, Doc. Math. 5 (2000) 445 | DOI
,[19] On the cyclic homology of exact categories, J. Pure Appl. Algebra 136 (1999) 1 | DOI
,[20] Symmetric bilinear forms, 73, Springer (1973) | DOI
, ,[21] On the motivic commutative ring spectrum BO, Algebra i Analiz 30 (2018) 43 | DOI
, ,[22] Quaternionic Grassmannians and Borel classes in algebraic geometry, Algebra i Analiz 33 (2021) 136 | DOI
, ,[23] Catégorie homotopique stable d’un site suspendu avec intervalle, Bull. Soc. Math. France 135 (2007) 495 | DOI
,[24] Algebraic K-theory, A1-homotopy and Riemann–Roch theorems, J. Topol. 3 (2010) 229 | DOI
,[25] Hermitian K-theory, derived equivalences and Karoubi’s fundamental theorem, J. Pure Appl. Algebra 221 (2017) 1729 | DOI
,[26] Geometric models for higher Grothendieck–Witt groups in A1-homotopy theory, Math. Ann. 362 (2015) 1143 | DOI
, ,[27] Groupes de Grothendieck des schémas en groupes réductifs déployés, Inst. Hautes Études Sci. Publ. Math. 34 (1968) 37 | DOI
,[28] Théorie des intersections et théorème de Riemann–Roch (SGA 6), 225, Springer (1971)
, , ,[29] The Stacks project, electronic reference (2005–)
, , ,[30] Grothendieck–Witt groups of triangulated categories, preprint (2003)
,[31] Symmetric representation rings are λ-rings, New York J. Math. 21 (2015) 1055
,[32] The γ-filtration on the Witt ring of a scheme, Q. J. Math. 69 (2018) 549 | DOI
,Cité par Sources :