Helly groups
Geometry & topology, Tome 29 (2025) no. 1, pp. 1-70.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

Helly graphs are graphs in which every family of pairwise-intersecting balls has a nonempty intersection. This is a classical and widely studied class of graphs. We focus on groups acting geometrically on Helly graphs — Helly groups. We provide numerous examples of such groups: all (Gromov) hyperbolic groups, CAT(0) cubical groups, finitely presented graphical C(4) T(4) small cancellation groups and type-preserving uniform lattices in Euclidean buildings of type Cn are Helly; free products of Helly groups with amalgamation over finite subgroups, graph products of Helly groups, some diagram products of Helly groups, some right-angled graphs of Helly groups and quotients of Helly groups by finite normal subgroups are Helly. We show many properties of Helly groups: biautomaticity, existence of finite-dimensional models for classifying spaces for proper actions, contractibility of asymptotic cones, existence of EZ-boundaries, satisfiability of the Farrell–Jones conjecture and satisfiability of the coarse Baum–Connes conjecture. This leads to new results for some classical families of groups (eg for FC-type Artin groups) and to a unified approach to results obtained earlier.

DOI : 10.2140/gt.2025.29.1
Keywords: Helly group, injective space, hyperbolic group, $\mathrm{CAT}(0)$ cubical group, biautomaticity, EZ-boundary, Baum–Connes conjecture

Chalopin, Jérémie 1 ; Chepoi, Victor 2 ; Genevois, Anthony 3 ; Hirai, Hiroshi 4 ; Osajda, Damian 5

1 Laboratoire d’Informatique et Systèmes, CNRS, Aix-Marseille Université, Marseille, France
2 Laboratoire d’Informatique et Systèmes, Aix-Marseille Université, CNRS, Marseille, France
3 Département de Mathématiques, Faculté des Sciences d’Orsay Université Paris-Sud, Orsay, France, Institut Montpelliérain Alexander Grothendieck, Université de Montpellier, Montpellier, France
4 Graduate School of Mathematics, Nagoya University, Nagoya, Japan
5 Institute of Mathematics, Polish Academy of Sciences, Warszawa, Poland, Instytut Matematyczny, Uniwersytet Wrocławski, Wrocław, Poland
@article{GT_2025_29_1_a0,
     author = {Chalopin, J\'er\'emie and Chepoi, Victor and Genevois, Anthony and Hirai, Hiroshi and Osajda, Damian},
     title = {Helly groups},
     journal = {Geometry & topology},
     pages = {1--70},
     publisher = {mathdoc},
     volume = {29},
     number = {1},
     year = {2025},
     doi = {10.2140/gt.2025.29.1},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2025.29.1/}
}
TY  - JOUR
AU  - Chalopin, Jérémie
AU  - Chepoi, Victor
AU  - Genevois, Anthony
AU  - Hirai, Hiroshi
AU  - Osajda, Damian
TI  - Helly groups
JO  - Geometry & topology
PY  - 2025
SP  - 1
EP  - 70
VL  - 29
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2025.29.1/
DO  - 10.2140/gt.2025.29.1
ID  - GT_2025_29_1_a0
ER  - 
%0 Journal Article
%A Chalopin, Jérémie
%A Chepoi, Victor
%A Genevois, Anthony
%A Hirai, Hiroshi
%A Osajda, Damian
%T Helly groups
%J Geometry & topology
%D 2025
%P 1-70
%V 29
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2025.29.1/
%R 10.2140/gt.2025.29.1
%F GT_2025_29_1_a0
Chalopin, Jérémie; Chepoi, Victor; Genevois, Anthony; Hirai, Hiroshi; Osajda, Damian. Helly groups. Geometry & topology, Tome 29 (2025) no. 1, pp. 1-70. doi : 10.2140/gt.2025.29.1. http://geodesic.mathdoc.fr/articles/10.2140/gt.2025.29.1/

[1] J A Altobelli, The word problem for Artin groups of FC type, J. Pure Appl. Algebra 129 (1998) 1 | DOI

[2] N Aronszajn, P Panitchpakdi, Extension of uniformly continuous transformations and hyperconvex metric spaces, Pacific J. Math. 6 (1956) 405 | DOI

[3] H J Bandelt, Hereditary modular graphs, Combinatorica 8 (1988) 149 | DOI

[4] H J Bandelt, V Chepoi, Metric graph theory and geometry: a survey, from: "Surveys on discrete and computational geometry" (editors J E Goodman, J Pach, R Pollack), Contemp. Math. 453, Amer. Math. Soc. (2008) 49 | DOI

[5] H J Bandelt, V Chepoi, D Eppstein, Combinatorics and geometry of finite and infinite squaregraphs, SIAM J. Discrete Math. 24 (2010) 1399 | DOI

[6] H J Bandelt, H M Mulder, Pseudomodular graphs, Discrete Math. 62 (1986) 245 | DOI

[7] H J Bandelt, H M Mulder, E Wilkeit, Quasi-median graphs and algebras, J. Graph Theory 18 (1994) 681 | DOI

[8] H J Bandelt, E Pesch, Dismantling absolute retracts of reflexive graphs, European J. Combin. 10 (1989) 211 | DOI

[9] H J Bandelt, E Prisner, Clique graphs and Helly graphs, J. Combin. Theory Ser. B 51 (1991) 34 | DOI

[10] H J Bandelt, M Van De Vel, Superextensions and the depth of median graphs, J. Combin. Theory Ser. A 57 (1991) 187 | DOI

[11] J A Barmak, E G Minian, Strong homotopy types, nerves and collapses, Discrete Comput. Geom. 47 (2012) 301 | DOI

[12] A Bartels, W Lück, The Borel conjecture for hyperbolic and CAT(0)-groups, Ann. of Math. 175 (2012) 631 | DOI

[13] C Berge, Hypergraphs: combinatorics of finite sets, 45, North-Holland (1989)

[14] C Berge, P Duchet, A generalization of Gilmore’s theorem, from: "Recent advances in graph theory" (editor M Fiedler), Academia (1975) 49

[15] C Berge, M Las Vergnas, Sur un théorème du type König pour hypergraphes, Ann. New York Acad. Sci. 175 (1970) 32 | DOI

[16] M Bestvina, Local homology properties of boundaries of groups, Michigan Math. J. 43 (1996) 123 | DOI

[17] A Björner, Topological methods, from: "Handbook of combinatorics, II" (editors R L Graham, M Grötschel, L Lovász), Elsevier (1995) 1819

[18] K Borsuk, On the imbedding of systems of compacta in simplicial complexes, Fund. Math. 35 (1948) 217 | DOI

[19] B H Bowditch, Median and injective metric spaces, Math. Proc. Cambridge Philos. Soc. 168 (2020) 43 | DOI

[20] T Brady, J P Mccammond, Three-generator Artin groups of large type are biautomatic, J. Pure Appl. Algebra 151 (2000) 1 | DOI

[21] M R Bridson, A Haefliger, Metric spaces of non-positive curvature, 319, Springer (1999) | DOI

[22] P J Cameron, Dual polar spaces, Geom. Dedicata 12 (1982) 75 | DOI

[23] J Chalopin, V Chepoi, H Hirai, D Osajda, Weakly modular graphs and nonpositive curvature, 1309, Amer. Math. Soc. (2020) | DOI

[24] R Charney, Artin groups of finite type are biautomatic, Math. Ann. 292 (1992) 671 | DOI

[25] V D Chepoi, Classification of graphs by means of metric triangles, Metody Diskret. Analiz. (1989) 75

[26] V Chepoi, A note on r-dominating cliques, Discrete Math. 183 (1998) 47 | DOI

[27] V Chepoi, Graphs of some CAT(0) complexes, Adv. in Appl. Math. 24 (2000) 125 | DOI

[28] V Chepoi, F F Dragan, B Estellon, M Habib, Y Vaxès, Diameters, centers, and approximating trees of δ-hyperbolic geodesic spaces and graphs, from: "Symposium on computational geometry", ACM (2008) 59 | DOI

[29] V Chepoi, B Estellon, Packing and covering δ-hyperbolic spaces by balls, from: "Approximation, randomization, and combinatorial optimization: algorithms and techniques" (editors M Charikar, K Jansen, O Reingold, J D P Rolim), Lecture Notes in Comput. Sci. 4627, Springer (2007) 59 | DOI

[30] V Chepoi, K Knauer, T Marc, Hypercellular graphs : partial cubes without Q3− as partial cube minor, Discrete Math. 343 (2020) 111678 | DOI

[31] M Chrobak, L L Larmore, Generosity helps or an 11-competitive algorithm for three servers, J. Algorithms 16 (1994) 234 | DOI

[32] D Descombes, Asymptotic rank of spaces with bicombings, Math. Z. 284 (2016) 947 | DOI

[33] D Descombes, U Lang, Convex geodesic bicombings and hyperbolicity, Geom. Dedicata 177 (2015) 367 | DOI

[34] D Descombes, U Lang, Flats in spaces with convex geodesic bicombings, Anal. Geom. Metr. Spaces 4 (2016) 68 | DOI

[35] F F Dragan, Центры в графах и своıство Хелли, PhD thesis, Moldova State University (1989)

[36] F F Dragan, H M Guarnera, Obstructions to a small hyperbolicity in Helly graphs, Discrete Math. 342 (2019) 326 | DOI

[37] A W M Dress, Trees, tight extensions of metric spaces, and the cohomological dimension of certain groups: a note on combinatorial properties of metric spaces, Adv. Math. 53 (1984) 321 | DOI

[38] A W M Dress, A note on compact groups, acting on R-trees, Beitr. Algebra Geom. 29 (1989) 81

[39] A W M Dress, R Scharlau, Gated sets in metric spaces, Aequationes Math. 34 (1987) 112 | DOI

[40] D B A Epstein, J W Cannon, D F Holt, S V F Levy, M S Paterson, W P Thurston, Word processing in groups, Jones Bartlett (1992) | DOI

[41] F Escalante, Über iterierte Clique-Graphen, Abh. Math. Sem. Univ. Hamburg 39 (1973) 59 | DOI

[42] M Farber, R E Jamison, On local convexity in graphs, Discrete Math. 66 (1987) 231 | DOI

[43] F T Farrell, J F Lafont, EZ-structures and topological applications, Comment. Math. Helv. 80 (2005) 103 | DOI

[44] T Fukaya, S I Oguni, A coarse Cartan–Hadamard theorem with application to the coarse Baum–Connes conjecture, J. Topol. Anal. 12 (2020) 857 | DOI

[45] A Genevois, Cubical-like geometry of quasi-median graphs and applications to geometric group theory, PhD thesis, Aix-Marseille Université (2017)

[46] R Geoghegan, Topological methods in group theory, 243, Springer (2008) | DOI

[47] S M Gersten, H B Short, Small cancellation theory and automatic groups, Invent. Math. 102 (1990) 305 | DOI

[48] O Goodman, V Moulton, On the tight span of an antipodal graph, Discrete Math. 218 (2000) 73 | DOI

[49] M Gromov, Hyperbolic groups, from: "Essays in group theory" (editor S M Gersten), Math. Sci. Res. Inst. Publ. 8, Springer (1987) 75 | DOI

[50] V S Guba, M V Sapir, On subgroups of the R Thompson group F and other diagram groups, Mat. Sb. 190 (1999) 3 | DOI

[51] A Hatcher, Algebraic topology, Cambridge Univ. Press (2002)

[52] P Hell, I Rival, Absolute retracts and varieties of reflexive graphs, Canad. J. Math. 39 (1987) 544 | DOI

[53] S Hensel, D Osajda, P Przytycki, Realisation and dismantlability, Geom. Topol. 18 (2014) 2079 | DOI

[54] N Hoda, Quadric complexes, Michigan Math. J. 69 (2020) 241 | DOI

[55] N Hoda, Crystallographic Helly groups, Bull. Lond. Math. Soc. 55 (2023) 2991 | DOI

[56] J Huang, D Osajda, Large-type Artin groups are systolic, Proc. Lond. Math. Soc. 120 (2020) 95 | DOI

[57] J Huang, D Osajda, Helly meets Garside and Artin, Invent. Math. 225 (2021) 395 | DOI

[58] S Hughes, M Valiunas, Commensurating HNN-extensions: hierarchical hyperbolicity and biautomaticity, (2022)

[59] J R Isbell, Six theorems about injective metric spaces, Comment. Math. Helv. 39 (1964) 65 | DOI

[60] J R Isbell, Median algebra, Trans. Amer. Math. Soc. 260 (1980) 319 | DOI

[61] T Januszkiewicz, J Świątkowski, Simplicial nonpositive curvature, Publ. Math. Inst. Hautes Études Sci. 104 (2006) 1 | DOI

[62] E M Jawhari, M Pouzet, D Misane, Retracts: graphs and ordered sets from the metric point of view, from: "Combinatorics and ordered sets" (editor I Rival), Contemp. Math. 57, Amer. Math. Soc. (1986) 175 | DOI

[63] M Kapovich, B Leeb, On asymptotic cones and quasi-isometry classes of fundamental groups of 3-manifolds, Geom. Funct. Anal. 5 (1995) 582 | DOI

[64] D Kasprowski, H Rüping, The Farrell–Jones conjecture for hyperbolic and CAT(0)-groups revisited, J. Topol. Anal. 9 (2017) 551 | DOI

[65] U Lang, Injective hulls of certain discrete metric spaces and groups, J. Topol. Anal. 5 (2013) 297 | DOI

[66] L Lovász, Combinatorial problems and exercises, North-Holland (1979) 551

[67] R C Lyndon, P E Schupp, Combinatorial group theory, 89, Springer (1977) | DOI

[68] B Miesch, Gluing hyperconvex metric spaces, Anal. Geom. Metr. Spaces 3 (2015) 102 | DOI

[69] G A Niblo, L D Reeves, The geometry of cube complexes and the complexity of their fundamental groups, Topology 37 (1998) 621 | DOI

[70] D Osajda, Residually finite non-exact groups, Geom. Funct. Anal. 28 (2018) 509 | DOI

[71] D Osajda, Small cancellation labellings of some infinite graphs and applications, Acta Math. 225 (2020) 159 | DOI

[72] D Osajda, T Prytuła, Classifying spaces for families of subgroups for systolic groups, Groups Geom. Dyn. 12 (2018) 1005 | DOI

[73] D Osajda, P Przytycki, Boundaries of systolic groups, Geom. Topol. 13 (2009) 2807 | DOI

[74] D Peifer, Artin groups of extra-large type are biautomatic, J. Pure Appl. Algebra 110 (1996) 15 | DOI

[75] E Pesch, Minimal extensions of graphs to absolute retracts, J. Graph Theory 11 (1987) 585 | DOI

[76] E Pesch, Retracts of graphs, 110, Athenäum (1988)

[77] N Polat, Finite invariant simplices in infinite graphs, Period. Math. Hungar. 27 (1993) 125 | DOI

[78] N Polat, Convexity and fixed-point properties in Helly graphs, Discrete Math. 229 (2001) 197 | DOI

[79] S J Pride, On Tits’ conjecture and other questions concerning Artin and generalized Artin groups, Invent. Math. 86 (1986) 347 | DOI

[80] A Quilliot, On the Helly property working as a compactness criterion on graphs, J. Combin. Theory Ser. A 40 (1985) 186 | DOI

[81] M Roller, Poc sets, median algebras and group actions, Habilitationsschrift, Universität Regensburg (1998)

[82] M Sageev, Ends of group pairs and non-positively curved cube complexes, Proc. Lond. Math. Soc. 71 (1995) 585 | DOI

[83] J P Serre, Trees, Springer (1980) | DOI

[84] V P Soltan, V D Chepoi, Conditions for invariance of set diameters under d-convexification in a graph, Kibernetika (Kiev) (1983) 14

[85] J Świątkowski, Regular path systems and (bi)automatic groups, Geom. Dedicata 118 (2006) 23 | DOI

[86] J L Szwarcfiter, Recognizing clique-Helly graphs, Ars Combin. 45 (1997) 29

[87] M Van De Vel, Collapsible polyhedra and median spaces, Proc. Amer. Math. Soc. 126 (1998) 2811 | DOI

[88] D T Wise, Cubulating small cancellation groups, Geom. Funct. Anal. 14 (2004) 150 | DOI

Cité par Sources :