Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
We prove a rigidity result for group actions on the line whose elements have what we call “hyperbolic-like” dynamics. Using this, we give a rigidity theorem for –covered Anosov flows on –manifolds, characterizing orbit equivalent flows in terms of the elements of the fundamental group represented by periodic orbits. As consequences of this, we give an efficient criterion to determine the isotopy classes of self-orbit equivalences of –covered Anosov flows, and prove finiteness of contact Anosov flows on any given manifold.
In the appendix, with Jonathan Bowden, we prove that orbit equivalences of contact Anosov flows correspond exactly to isomorphisms of the associated contact structures. This gives a powerful tool to translate results on Anosov flows to contact geometry and vice versa. We illustrate its use by giving two new results in contact geometry: the existence of manifolds with arbitrarily many distinct Anosov contact structures, answering a question of Foulon, Hasselblatt and Vaugon, and a virtual description of the group of contact transformations of a Anosov contact structure, generalizing a result of Giroux and Massot.
Barthelmé, Thomas 1 ; Mann, Kathryn 2
@article{GT_2024_28_2_a8, author = {Barthelm\'e, Thomas and Mann, Kathryn}, title = {Orbit equivalences of {\ensuremath{\mathbb{R}}{\textendash}covered} {Anosov} flows and hyperbolic-like actions on the line}, journal = {Geometry & topology}, pages = {867--899}, publisher = {mathdoc}, volume = {28}, number = {2}, year = {2024}, doi = {10.2140/gt.2024.28.867}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2024.28.867/} }
TY - JOUR AU - Barthelmé, Thomas AU - Mann, Kathryn TI - Orbit equivalences of ℝ–covered Anosov flows and hyperbolic-like actions on the line JO - Geometry & topology PY - 2024 SP - 867 EP - 899 VL - 28 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/gt.2024.28.867/ DO - 10.2140/gt.2024.28.867 ID - GT_2024_28_2_a8 ER -
%0 Journal Article %A Barthelmé, Thomas %A Mann, Kathryn %T Orbit equivalences of ℝ–covered Anosov flows and hyperbolic-like actions on the line %J Geometry & topology %D 2024 %P 867-899 %V 28 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.2140/gt.2024.28.867/ %R 10.2140/gt.2024.28.867 %F GT_2024_28_2_a8
Barthelmé, Thomas; Mann, Kathryn. Orbit equivalences of ℝ–covered Anosov flows and hyperbolic-like actions on the line. Geometry & topology, Tome 28 (2024) no. 2, pp. 867-899. doi : 10.2140/gt.2024.28.867. http://geodesic.mathdoc.fr/articles/10.2140/gt.2024.28.867/
[1] Cabling, contact structures and mapping class monoids, J. Differential Geom. 90 (2012) 1
, , ,[2] Caractérisation des flots d’Anosov en dimension 3 par leurs feuilletages faibles, Ergodic Theory Dynam. Systems 15 (1995) 247 | DOI
,[3] Mise en position optimale de tores par rapport à un flot d’Anosov, Comment. Math. Helv. 70 (1995) 113 | DOI
,[4] Plane affine geometry and Anosov flows, Ann. Sci. École Norm. Sup. 34 (2001) 871 | DOI
,[5] De l’hyperbolique au globalement hyperbolique, Habilitation à diriger des recherches, Université Claude Bernard Lyon 1 (2005)
,[6] Pseudo-Anosov flows in toroidal manifolds, Geom. Topol. 17 (2013) 1877 | DOI
, ,[7] Counting periodic orbits of Anosov flows in free homotopy classes, Comment. Math. Helv. 92 (2017) 641 | DOI
, ,[8] A note on self orbit equivalences of Anosov flows and bundles with fiberwise Anosov flows, Math. Res. Lett. 26 (2019) 711 | DOI
, ,[9] Collapsed Anosov flows and self orbit equivalences, Comment. Math. Helv. 98 (2023) 771 | DOI
, , ,[10] Axiom A diffeomorphisms derived from Anosov flows, J. Mod. Dyn. 4 (2010) 1 | DOI
, ,[11] Anosov flows on 3–manifolds : the surgeries and the foliations, Ergodic Theory Dynam. Systems 43 (2023) 1129 | DOI
, ,[12] Anomalous partially hyperbolic diffeomorphisms, III : Abundance and incoherence, Geom. Topol. 24 (2020) 1751 | DOI
, , , ,[13] C0 stability of boundary actions and inequivalent Anosov flows, Ann. Sci. École Norm. Sup. 55 (2022) 1003 | DOI
, ,[14] Convergence groups and Seifert fibered 3–manifolds, Invent. Math. 118 (1994) 441 | DOI
, ,[15] Finitude homotopique et isotopique des structures de contact tendues, Publ. Math. Inst. Hautes Études Sci. 109 (2009) 245 | DOI
, , ,[16] A few remarks about symplectic filling, Geom. Topol. 8 (2004) 277 | DOI
,[17] Introduction to symplectic field theory, Geom. Funct. Anal. special volume (2000) 560 | DOI
, , ,[18] On symplectic fillings, Algebr. Geom. Topol. 4 (2004) 73 | DOI
,[19] Group actions on one-manifolds, II : Extensions of Hölder’s theorem, Trans. Amer. Math. Soc. 355 (2003) 4385 | DOI
, ,[20] Anosov flows in 3–manifolds, Ann. of Math. 139 (1994) 79 | DOI
,[21] Hyperbolic flows, Eur. Math. Soc. (2019) | DOI
, ,[22] Contact Anosov flows on hyperbolic 3–manifolds, Geom. Topol. 17 (2013) 1225 | DOI
, ,[23] Orbit growth of contact structures after surgery, Ann. H. Lebesgue 4 (2021) 1103 | DOI
, , ,[24] Torus bundles not distinguished by TQFT invariants, Geom. Topol. 17 (2013) 2289 | DOI
,[25] Convergence groups are Fuchsian groups, Ann. of Math. 136 (1992) 447 | DOI
,[26] Four-dimensional symplectic cobordisms containing three-handles, Geom. Topol. 10 (2006) 1749 | DOI
,[27] Géométrie de contact : de la dimension trois vers les dimensions supérieures, from: "Proceedings of the International Congress of Mathematicians, II" (editor T Li), Higher Ed. Press (2002) 405
,[28] On the contact mapping class group of Legendrian circle bundles, Compos. Math. 153 (2017) 294 | DOI
, ,[29] Cylindrical contact homology for dynamically convex contact forms in three dimensions, J. Symplectic Geom. 14 (2016) 983 | DOI
, ,[30] Homotopy equivalences of 3–manifolds with boundaries, 761, Springer (1979) | DOI
,[31] Möbius-like groups of homeomorphisms of the circle, Trans. Amer. Math. Soc. 351 (1999) 4791 | DOI
,[32] On contact Anosov flows, Ann. of Math. 159 (2004) 1275 | DOI
,[33] Equivariant symplectic homology of Anosov contact structures, Bull. Braz. Math. Soc. 43 (2012) 513 | DOI
, ,[34] Flots d’Anosov et sections de Birkhoff, PhD thesis, Université Grenoble Alpes (2021)
,[35] Anosov flows and non-Stein symplectic manifolds, Ann. Inst. Fourier (Grenoble) 45 (1995) 1407 | DOI
,[36] Anosov flows, transversely affine foliations, and a conjecture of Verjovsky, J. Lond. Math. Soc. 23 (1981) 359 | DOI
,[37] Mathematical problems for the next century, Math. Intelligencer 20 (1998) 7 | DOI
,[38] Three-manifolds, foliations and circles, I, preprint (1997)
,Cité par Sources :