The nonabelian Brill–Noether divisor on ℳ13 and the Kodaira dimension of ℛ13
Geometry & topology, Tome 28 (2024) no. 2, pp. 803-866.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

We highlight several novel aspects of the moduli space of curves of genus 13, the first genus g where phenomena related to K3 surfaces no longer govern the birational geometry of ¯g. We compute the class of the nonabelian Brill–Noether divisor on ¯13 of curves that have a stable rank-two vector bundle with canonical determinant and many sections. This provides the first example of an effective divisor on  ¯g with slope less than 6 + 10g. Earlier work on the slope conjecture suggested that such divisors may not exist. The main geometric application of our result is a proof that the Prym moduli space ¯13 is of general type. Among other things, we also prove the Bertram–Feinberg–Mukai and the strong maximal rank conjectures on ¯13.

DOI : 10.2140/gt.2024.28.803
Keywords: strong maximal rank conjecture, genus 13, Mukai–Petri divisor, Prym moduli space

Farkas, Gavril 1 ; Jensen, David 2 ; Payne, Sam 3

1 Institut für Mathematik, Humboldt-Universität zu Berlin, Berlin, Germany
2 Department of Mathematics, University of Kentucky, Lexington, KY, United States
3 Department of Mathematics, University of Texas at Austin, Austin, TX, United States
@article{GT_2024_28_2_a7,
     author = {Farkas, Gavril and Jensen, David and Payne, Sam},
     title = {The nonabelian {Brill{\textendash}Noether} divisor on {\ensuremath{\mathscr{M}}13} and the {Kodaira} dimension of {\ensuremath{\mathscr{R}}13}},
     journal = {Geometry & topology},
     pages = {803--866},
     publisher = {mathdoc},
     volume = {28},
     number = {2},
     year = {2024},
     doi = {10.2140/gt.2024.28.803},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2024.28.803/}
}
TY  - JOUR
AU  - Farkas, Gavril
AU  - Jensen, David
AU  - Payne, Sam
TI  - The nonabelian Brill–Noether divisor on ℳ13 and the Kodaira dimension of ℛ13
JO  - Geometry & topology
PY  - 2024
SP  - 803
EP  - 866
VL  - 28
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2024.28.803/
DO  - 10.2140/gt.2024.28.803
ID  - GT_2024_28_2_a7
ER  - 
%0 Journal Article
%A Farkas, Gavril
%A Jensen, David
%A Payne, Sam
%T The nonabelian Brill–Noether divisor on ℳ13 and the Kodaira dimension of ℛ13
%J Geometry & topology
%D 2024
%P 803-866
%V 28
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2024.28.803/
%R 10.2140/gt.2024.28.803
%F GT_2024_28_2_a7
Farkas, Gavril; Jensen, David; Payne, Sam. The nonabelian Brill–Noether divisor on ℳ13 and the Kodaira dimension of ℛ13. Geometry & topology, Tome 28 (2024) no. 2, pp. 803-866. doi : 10.2140/gt.2024.28.803. http://geodesic.mathdoc.fr/articles/10.2140/gt.2024.28.803/

[1] D Agostini, I Barros, Pencils on surfaces with normal crossings and the Kodaira dimension of Mg,n, Forum Math. Sigma 9 (2021) | DOI

[2] Y An, M Baker, G Kuperberg, F Shokrieh, Canonical representatives for divisor classes on tropical curves and the matrix-tree theorem, Forum Math. Sigma 2 (2014) | DOI

[3] M Aprodu, G Farkas, Koszul cohomology and applications to moduli, from: "Grassmannians, moduli spaces and vector bundles" (editors D A Ellwood, E Previato), Clay Math. Proc. 14, Amer. Math. Soc. (2011) 25

[4] M Aprodu, G Farkas, Ş Papadima, C Raicu, J Weyman, Topological invariants of groups and Koszul modules, Duke Math. J. 171 (2022) 2013 | DOI

[5] E Arbarello, M Cornalba, P A Griffiths, J Harris, Geometry of algebraic curves, I, 267, Springer (1985) | DOI

[6] A Beauville, Prym varieties and the Schottky problem, Invent. Math. 41 (1977) 149 | DOI

[7] A Bertram, B Feinberg, On stable rank two bundles with canonical determinant and many sections, from: "Algebraic geometry" (editor P E Newstead), Lecture Notes in Pure and Appl. Math. 200, Dekker (1998) 259

[8] R Biggers, M Fried, Irreducibility of moduli spaces of cyclic unramified covers of genus g curves, Trans. Amer. Math. Soc. 295 (1986) 59 | DOI

[9] G Bruns, R15 is of general type, Algebra Number Theory 10 (2016) 1949 | DOI

[10] D Chen, G Farkas, I Morrison, Effective divisors on moduli spaces of curves and abelian varieties, from: "A celebration of algebraic geometry" (editors B Hassett, J McKernan, J Starr, R Vakil), Clay Math. Proc. 18, Amer. Math. Soc. (2013) 131

[11] A Chiodo, D Eisenbud, G Farkas, F O Schreyer, Syzygies of torsion bundles and the geometry of the level l modular variety over Mg, Invent. Math. 194 (2013) 73 | DOI

[12] F Cools, J Draisma, S Payne, E Robeva, A tropical proof of the Brill–Noether theorem, Adv. Math. 230 (2012) 759 | DOI

[13] M Coppens, G Martens, Linear series on a general k–gonal curve, Abh. Math. Sem. Univ. Hamburg 69 (1999) 347 | DOI

[14] E Cotterill, A Alonso Gonzalo, N Zhang, The strong maximal rank conjecture and higher rank Brill–Noether theory, J. Lond. Math. Soc. 104 (2021) 169 | DOI

[15] D Eisenbud, J Harris, Limit linear series: basic theory, Invent. Math. 85 (1986) 337 | DOI

[16] D Eisenbud, J Harris, The Kodaira dimension of the moduli space of curves of genus ≥ 23, Invent. Math. 90 (1987) 359 | DOI

[17] G Farkas, Koszul divisors on moduli spaces of curves, Amer. J. Math. 131 (2009) 819 | DOI

[18] G Farkas, Brill–Noether with ramification at unassigned points, J. Pure Appl. Algebra 217 (2013) 1838 | DOI

[19] G Farkas, D Jensen, S Payne, The Kodaira dimensions of M22 and M23, preprint (2020)

[20] G Farkas, K Ludwig, The Kodaira dimension of the moduli space of Prym varieties, J. Eur. Math. Soc. 12 (2010) 755 | DOI

[21] G Farkas, M Popa, Effective divisors on Mg, curves on K3 surfaces, and the slope conjecture, J. Algebraic Geom. 14 (2005) 241 | DOI

[22] G Farkas, R Rimányi, Quadric rank loci on moduli of curves and K3 surfaces, Ann. Sci. Éc. Norm. Supér. 53 (2020) 945 | DOI

[23] G Farkas, A Verra, Prym varieties and moduli of polarized Nikulin surfaces, Adv. Math. 290 (2016) 314 | DOI

[24] W Fulton, Intersection theory, 2, Springer (1984) | DOI

[25] C Haase, G Musiker, J Yu, Linear systems on tropical curves, Math. Z. 270 (2012) 1111 | DOI

[26] J Harris, I Morrison, Slopes of effective divisors on the moduli space of stable curves, Invent. Math. 99 (1990) 321 | DOI

[27] J Harris, D Mumford, On the Kodaira dimension of the moduli space of curves, Invent. Math. 67 (1982) 23 | DOI

[28] J Harris, L Tu, Chern numbers of kernel and cokernel bundles, Invent. Math. 75 (1984) 467 | DOI

[29] R Hartshorne, Stable reflexive sheaves, Math. Ann. 254 (1980) 121 | DOI

[30] D Jensen, S Payne, Tropical independence, I : Shapes of divisors and a proof of the Gieseker–Petri theorem, Algebra Number Theory 8 (2014) 2043 | DOI

[31] D Jensen, S Payne, Tropical independence, II : The maximal rank conjecture for quadrics, Algebra Number Theory 10 (2016) 1601 | DOI

[32] D Khosla, Tautological classes on moduli spaces of curves with linear series and a push-forward formula when ρ = 0, preprint (2007)

[33] H Lange, M S Narasimhan, Maximal subbundles of rank two vector bundles on curves, Math. Ann. 266 (1983) 55 | DOI

[34] H Lange, P E Newstead, S S Park, Nonemptiness of Brill–Noether loci in M(2,K), Comm. Algebra 44 (2016) 746 | DOI

[35] R Lazarsfeld, Brill–Noether–Petri without degenerations, J. Differential Geom. 23 (1986) 299

[36] A Logan, The Kodaira dimension of moduli spaces of curves with marked points, Amer. J. Math. 125 (2003) 105 | DOI

[37] S Mukai, Curves, K3 surfaces and Fano 3–folds of genus ≤ 10, from: "Algebraic geometry and commutative algebra, I" (editors H Hijikata, H Hironaka, M Maruyama, H Matsumura, M Miyanishi, T Oda, K Ueno), Kinokuniya (1988) 357

[38] S Mukai, Noncommutativizability of Brill–Noether theory and 3–dimensional Fano varieties, Sūgaku 49 (1997) 1

[39] M Nagata, On self-intersection number of a section on a ruled surface, Nagoya Math. J. 37 (1970) 191 | DOI

[40] P E Newstead, Characteristic classes of stable bundles of rank 2 over an algebraic curve, Trans. Amer. Math. Soc. 169 (1972) 337 | DOI

[41] M Raynaud, Sections des fibrés vectoriels sur une courbe, Bull. Soc. Math. France 110 (1982) 103

[42] X Sun, Moduli spaces of SL(r)–bundles on singular irreducible curves, Asian J. Math. 7 (2003) 609 | DOI

[43] S L Tan, On the slopes of the moduli spaces of curves, Internat. J. Math. 9 (1998) 119 | DOI

[44] M Teixidor I Bigas, Rank two vector bundles with canonical determinant, Math. Nachr. 265 (2004) 100 | DOI

[45] M Teixidor I Bigas, Petri map for rank two bundles with canonical determinant, Compos. Math. 144 (2008) 705 | DOI

[46] M Thaddeus, Conformal field theory and the cohomology of the moduli space of stable bundles, J. Differential Geom. 35 (1992) 131

[47] A Verra, The unirationality of the moduli spaces of curves of genus 14 or lower, Compos. Math. 141 (2005) 1425 | DOI

[48] C Voisin, Sur l’application de Wahl des courbes satisfaisant la condition de Brill–Noether–Petri, Acta Math. 168 (1992) 249 | DOI

[49] N Zhang, Towards the Bertram–Feinberg–Mukai conjecture, J. Pure Appl. Algebra 220 (2016) 1588 | DOI

Cité par Sources :