Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
We highlight several novel aspects of the moduli space of curves of genus , the first genus where phenomena related to surfaces no longer govern the birational geometry of . We compute the class of the nonabelian Brill–Noether divisor on of curves that have a stable rank-two vector bundle with canonical determinant and many sections. This provides the first example of an effective divisor on with slope less than . Earlier work on the slope conjecture suggested that such divisors may not exist. The main geometric application of our result is a proof that the Prym moduli space is of general type. Among other things, we also prove the Bertram–Feinberg–Mukai and the strong maximal rank conjectures on .
Farkas, Gavril 1 ; Jensen, David 2 ; Payne, Sam 3
@article{GT_2024_28_2_a7, author = {Farkas, Gavril and Jensen, David and Payne, Sam}, title = {The nonabelian {Brill{\textendash}Noether} divisor on {\ensuremath{\mathscr{M}}13} and the {Kodaira} dimension of {\ensuremath{\mathscr{R}}13}}, journal = {Geometry & topology}, pages = {803--866}, publisher = {mathdoc}, volume = {28}, number = {2}, year = {2024}, doi = {10.2140/gt.2024.28.803}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2024.28.803/} }
TY - JOUR AU - Farkas, Gavril AU - Jensen, David AU - Payne, Sam TI - The nonabelian Brill–Noether divisor on ℳ13 and the Kodaira dimension of ℛ13 JO - Geometry & topology PY - 2024 SP - 803 EP - 866 VL - 28 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/gt.2024.28.803/ DO - 10.2140/gt.2024.28.803 ID - GT_2024_28_2_a7 ER -
%0 Journal Article %A Farkas, Gavril %A Jensen, David %A Payne, Sam %T The nonabelian Brill–Noether divisor on ℳ13 and the Kodaira dimension of ℛ13 %J Geometry & topology %D 2024 %P 803-866 %V 28 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.2140/gt.2024.28.803/ %R 10.2140/gt.2024.28.803 %F GT_2024_28_2_a7
Farkas, Gavril; Jensen, David; Payne, Sam. The nonabelian Brill–Noether divisor on ℳ13 and the Kodaira dimension of ℛ13. Geometry & topology, Tome 28 (2024) no. 2, pp. 803-866. doi : 10.2140/gt.2024.28.803. http://geodesic.mathdoc.fr/articles/10.2140/gt.2024.28.803/
[1] Pencils on surfaces with normal crossings and the Kodaira dimension of Mg,n, Forum Math. Sigma 9 (2021) | DOI
, ,[2] Canonical representatives for divisor classes on tropical curves and the matrix-tree theorem, Forum Math. Sigma 2 (2014) | DOI
, , , ,[3] Koszul cohomology and applications to moduli, from: "Grassmannians, moduli spaces and vector bundles" (editors D A Ellwood, E Previato), Clay Math. Proc. 14, Amer. Math. Soc. (2011) 25
, ,[4] Topological invariants of groups and Koszul modules, Duke Math. J. 171 (2022) 2013 | DOI
, , , , ,[5] Geometry of algebraic curves, I, 267, Springer (1985) | DOI
, , , ,[6] Prym varieties and the Schottky problem, Invent. Math. 41 (1977) 149 | DOI
,[7] On stable rank two bundles with canonical determinant and many sections, from: "Algebraic geometry" (editor P E Newstead), Lecture Notes in Pure and Appl. Math. 200, Dekker (1998) 259
, ,[8] Irreducibility of moduli spaces of cyclic unramified covers of genus g curves, Trans. Amer. Math. Soc. 295 (1986) 59 | DOI
, ,[9] R15 is of general type, Algebra Number Theory 10 (2016) 1949 | DOI
,[10] Effective divisors on moduli spaces of curves and abelian varieties, from: "A celebration of algebraic geometry" (editors B Hassett, J McKernan, J Starr, R Vakil), Clay Math. Proc. 18, Amer. Math. Soc. (2013) 131
, , ,[11] Syzygies of torsion bundles and the geometry of the level l modular variety over Mg, Invent. Math. 194 (2013) 73 | DOI
, , , ,[12] A tropical proof of the Brill–Noether theorem, Adv. Math. 230 (2012) 759 | DOI
, , , ,[13] Linear series on a general k–gonal curve, Abh. Math. Sem. Univ. Hamburg 69 (1999) 347 | DOI
, ,[14] The strong maximal rank conjecture and higher rank Brill–Noether theory, J. Lond. Math. Soc. 104 (2021) 169 | DOI
, , ,[15] Limit linear series: basic theory, Invent. Math. 85 (1986) 337 | DOI
, ,[16] The Kodaira dimension of the moduli space of curves of genus ≥ 23, Invent. Math. 90 (1987) 359 | DOI
, ,[17] Koszul divisors on moduli spaces of curves, Amer. J. Math. 131 (2009) 819 | DOI
,[18] Brill–Noether with ramification at unassigned points, J. Pure Appl. Algebra 217 (2013) 1838 | DOI
,[19] The Kodaira dimensions of M22 and M23, preprint (2020)
, , ,[20] The Kodaira dimension of the moduli space of Prym varieties, J. Eur. Math. Soc. 12 (2010) 755 | DOI
, ,[21] Effective divisors on Mg, curves on K3 surfaces, and the slope conjecture, J. Algebraic Geom. 14 (2005) 241 | DOI
, ,[22] Quadric rank loci on moduli of curves and K3 surfaces, Ann. Sci. Éc. Norm. Supér. 53 (2020) 945 | DOI
, ,[23] Prym varieties and moduli of polarized Nikulin surfaces, Adv. Math. 290 (2016) 314 | DOI
, ,[24] Intersection theory, 2, Springer (1984) | DOI
,[25] Linear systems on tropical curves, Math. Z. 270 (2012) 1111 | DOI
, , ,[26] Slopes of effective divisors on the moduli space of stable curves, Invent. Math. 99 (1990) 321 | DOI
, ,[27] On the Kodaira dimension of the moduli space of curves, Invent. Math. 67 (1982) 23 | DOI
, ,[28] Chern numbers of kernel and cokernel bundles, Invent. Math. 75 (1984) 467 | DOI
, ,[29] Stable reflexive sheaves, Math. Ann. 254 (1980) 121 | DOI
,[30] Tropical independence, I : Shapes of divisors and a proof of the Gieseker–Petri theorem, Algebra Number Theory 8 (2014) 2043 | DOI
, ,[31] Tropical independence, II : The maximal rank conjecture for quadrics, Algebra Number Theory 10 (2016) 1601 | DOI
, ,[32] Tautological classes on moduli spaces of curves with linear series and a push-forward formula when ρ = 0, preprint (2007)
,[33] Maximal subbundles of rank two vector bundles on curves, Math. Ann. 266 (1983) 55 | DOI
, ,[34] Nonemptiness of Brill–Noether loci in M(2,K), Comm. Algebra 44 (2016) 746 | DOI
, , ,[35] Brill–Noether–Petri without degenerations, J. Differential Geom. 23 (1986) 299
,[36] The Kodaira dimension of moduli spaces of curves with marked points, Amer. J. Math. 125 (2003) 105 | DOI
,[37] Curves, K3 surfaces and Fano 3–folds of genus ≤ 10, from: "Algebraic geometry and commutative algebra, I" (editors H Hijikata, H Hironaka, M Maruyama, H Matsumura, M Miyanishi, T Oda, K Ueno), Kinokuniya (1988) 357
,[38] Noncommutativizability of Brill–Noether theory and 3–dimensional Fano varieties, Sūgaku 49 (1997) 1
,[39] On self-intersection number of a section on a ruled surface, Nagoya Math. J. 37 (1970) 191 | DOI
,[40] Characteristic classes of stable bundles of rank 2 over an algebraic curve, Trans. Amer. Math. Soc. 169 (1972) 337 | DOI
,[41] Sections des fibrés vectoriels sur une courbe, Bull. Soc. Math. France 110 (1982) 103
,[42] Moduli spaces of SL(r)–bundles on singular irreducible curves, Asian J. Math. 7 (2003) 609 | DOI
,[43] On the slopes of the moduli spaces of curves, Internat. J. Math. 9 (1998) 119 | DOI
,[44] Rank two vector bundles with canonical determinant, Math. Nachr. 265 (2004) 100 | DOI
,[45] Petri map for rank two bundles with canonical determinant, Compos. Math. 144 (2008) 705 | DOI
,[46] Conformal field theory and the cohomology of the moduli space of stable bundles, J. Differential Geom. 35 (1992) 131
,[47] The unirationality of the moduli spaces of curves of genus 14 or lower, Compos. Math. 141 (2005) 1425 | DOI
,[48] Sur l’application de Wahl des courbes satisfaisant la condition de Brill–Noether–Petri, Acta Math. 168 (1992) 249 | DOI
,[49] Towards the Bertram–Feinberg–Mukai conjecture, J. Pure Appl. Algebra 220 (2016) 1588 | DOI
,Cité par Sources :