Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
We compute the moduli of endomorphisms of the de Rham and crystalline cohomology functors, viewed as a cohomology theory on smooth schemes over truncated Witt vectors. As applications of our result, we deduce Drinfeld’s refinement of the classical Deligne–Illusie decomposition result for de Rham cohomology of varieties in characteristic that are liftable to , and prove further functorial improvements.
Li, Shizhang 1 ; Mondal, Shubhodip 2
@article{GT_2024_28_2_a6, author = {Li, Shizhang and Mondal, Shubhodip}, title = {On endomorphisms of the de {Rham} cohomology functor}, journal = {Geometry & topology}, pages = {759--802}, publisher = {mathdoc}, volume = {28}, number = {2}, year = {2024}, doi = {10.2140/gt.2024.28.759}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2024.28.759/} }
TY - JOUR AU - Li, Shizhang AU - Mondal, Shubhodip TI - On endomorphisms of the de Rham cohomology functor JO - Geometry & topology PY - 2024 SP - 759 EP - 802 VL - 28 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/gt.2024.28.759/ DO - 10.2140/gt.2024.28.759 ID - GT_2024_28_2_a6 ER -
Li, Shizhang; Mondal, Shubhodip. On endomorphisms of the de Rham cohomology functor. Geometry & topology, Tome 28 (2024) no. 2, pp. 759-802. doi : 10.2140/gt.2024.28.759. http://geodesic.mathdoc.fr/articles/10.2140/gt.2024.28.759/
[1] Some refinements of the Deligne–Illusie theorem, Algebra Number Theory 17 (2023) 465 | DOI
, ,[2] The Stacks project, electronic reference (2005–)
, , ,[3] p–adic derived de Rham cohomology, preprint (2012)
,[4] Prismatic F–gauges, lecture notes (2022)
,[5] Absolute prismatic cohomology, preprint (2022)
, ,[6] The prismatization of p–adic formal schemes, preprint (2022)
, ,[7] Revisiting the de Rham–Witt complex, 424, Soc. Math. France (2021) | DOI
, , ,[8] Integral p–adic Hodge theory, Publ. Math. Inst. Hautes Études Sci. 128 (2018) 219 | DOI
, , ,[9] Topological Hochschild homology and integral p–adic Hodge theory, Publ. Math. Inst. Hautes Études Sci. 129 (2019) 199 | DOI
, , ,[10] The pro-étale topology for schemes, from: "De la géométrie algébrique aux formes automorphes, I" (editors J B Bost, P Boyer, A Genestier, L Lafforgue, S Lysenko, S Morel, B C Ngo), Astérisque 369, Soc. Math. France (2015) 99 | DOI
, ,[11] Prisms and prismatic cohomology, Ann. of Math. 196 (2022) 1135 | DOI
, ,[12] Relèvements modulo p2 et décomposition du complexe de de Rham, Invent. Math. 89 (1987) 247 | DOI
, ,[13] A stacky approach to crystals, preprint (2018)
,[14] Prismatization, preprint (2020)
,[15] A 1–dimensional formal group over the prismatization of Spf Zp, preprint (2021)
,[16] p–adic periods and p–adic étale cohomology, from: "Current trends in arithmetical algebraic geometry" (editor K A Ribet), Contemp. Math. 67, Amer. Math. Soc. (1987) 179 | DOI
, ,[17] Complexe cotangent et déformations, I, 239, Springer (1971) | DOI
,[18] On p–adic vanishing cycles (application of ideas of Fontaine–Messing), from: "Algebraic geometry" (editor T Oda), Adv. Stud. Pure Math. 10, North-Holland (1987) 207 | DOI
,[19] p–adic Hodge theory for Artin stacks, preprint (2021)
, ,[20] Hodge-to–de Rham degeneration for stacks, Int. Math. Res. Not. 2022 (2022) 12852 | DOI
, ,[21] Comparison of prismatic cohomology and derived de Rham cohomology, J. Eur. Math. Soc. (2023) | DOI
, ,[22] Derived algebraic geometry, (2004)
,[23] Higher topos theory, 170, Princeton Univ. Press (2009) | DOI
,[24] Gaperf–modules and de Rham cohomology, Adv. Math. 409 (2022) 108691 | DOI
,[25] Reconstruction of the stacky approach to de Rham cohomology, Math. Z. 302 (2022) 687 | DOI
,[26] A universal Hochschild–Kostant–Rosenberg theorem, Geom. Topol. 26 (2022) 777 | DOI
, , ,[27] Non-decomposability of the de Rham complex and non-semisimplicity of the Sen operator, preprint (2023)
,[28] Homotopy over the complex numbers and generalized de Rham cohomology, from: "Moduli of vector bundles" (editor M Maruyama), Lecture Notes in Pure and Appl. Math. 179, Dekker (1996) 229 | DOI
,[29] Champs affines, Selecta Math. 12 (2006) 39 | DOI
,Cité par Sources :