Closed geodesics with prescribed intersection numbers
Geometry & topology, Tome 28 (2024) no. 2, pp. 701-758.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

Let (Σ,g) be a closed oriented negatively curved surface, and fix a simple closed geodesic γ. We give the asymptotic growth as L + of the number of primitive closed geodesics of length less than L intersecting γ exactly n times, where n is fixed positive integer. This is done by introducing a dynamical scattering operator associated to the surface with boundary obtained by cutting Σ along γ and by using the theory of Pollicott–Ruelle resonances for open systems.

DOI : 10.2140/gt.2024.28.701
Keywords: closed geodesics, intersection numbers, microlocal analysis, Ruelle resonances, scattering

Chaubet, Yann 1

1 Institut de Mathématiques d’Orsay, Université Paris-Saclay, Orsay, France, Laboratoire de Mathématiques Jean Leray, Université de Nantes, Nantes, France
@article{GT_2024_28_2_a5,
     author = {Chaubet, Yann},
     title = {Closed geodesics with prescribed intersection numbers},
     journal = {Geometry & topology},
     pages = {701--758},
     publisher = {mathdoc},
     volume = {28},
     number = {2},
     year = {2024},
     doi = {10.2140/gt.2024.28.701},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2024.28.701/}
}
TY  - JOUR
AU  - Chaubet, Yann
TI  - Closed geodesics with prescribed intersection numbers
JO  - Geometry & topology
PY  - 2024
SP  - 701
EP  - 758
VL  - 28
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2024.28.701/
DO  - 10.2140/gt.2024.28.701
ID  - GT_2024_28_2_a5
ER  - 
%0 Journal Article
%A Chaubet, Yann
%T Closed geodesics with prescribed intersection numbers
%J Geometry & topology
%D 2024
%P 701-758
%V 28
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2024.28.701/
%R 10.2140/gt.2024.28.701
%F GT_2024_28_2_a5
Chaubet, Yann. Closed geodesics with prescribed intersection numbers. Geometry & topology, Tome 28 (2024) no. 2, pp. 701-758. doi : 10.2140/gt.2024.28.701. http://geodesic.mathdoc.fr/articles/10.2140/gt.2024.28.701/

[1] N Anantharaman, Precise counting results for closed orbits of Anosov flows, Ann. Sci. École Norm. Sup. 33 (2000) 33 | DOI

[2] D V Anosov, Geodesic flows on closed Riemann manifolds with negative curvature, 90, Amer. Math. Soc. (1969)

[3] M F Atiyah, R Bott, A Lefschetz fixed point formula for elliptic complexes, I, Ann. of Math. 86 (1967) 374 | DOI

[4] V Baladi, M F Demers, On the measure of maximal entropy for finite horizon Sinai billiard maps, J. Amer. Math. Soc. 33 (2020) 381 | DOI

[5] V Baladi, M F Demers, C Liverani, Exponential decay of correlations for finite horizon Sinai billiard flows, Invent. Math. 211 (2018) 39 | DOI

[6] F Bonahon, Bouts des variétés hyperboliques de dimension 3, Ann. of Math. 124 (1986) 71 | DOI

[7] F Bonahon, The geometry of Teichmüller space via geodesic currents, Invent. Math. 92 (1988) 139 | DOI

[8] Y Bonthonneau, Les résonances du Laplacien sur les variétés à pointes, PhD thesis, Université Paris Sud (2015)

[9] R Bowen, The equidistribution of closed geodesics, Amer. J. Math. 94 (1972) 413 | DOI

[10] R Bowen, Symbolic dynamics for hyperbolic flows, Amer. J. Math. 95 (1973) 429 | DOI

[11] M R Bridson, A Haefliger, Metric spaces of non-positive curvature, 319, Springer (1999) | DOI

[12] F Dal’Bo, Remarques sur le spectre des longueurs d’une surface et comptages, Bol. Soc. Brasil. Mat. 30 (1999) 199 | DOI

[13] N V Dang, G Rivière, Poincaré series and linking of Legendrian knots, preprint (2020)

[14] H Delange, Généralisation du théorème de Ikehara, Ann. Sci. École Norm. Sup. 71 (1954) 213 | DOI

[15] S Dyatlov, C Guillarmou, Pollicott–Ruelle resonances for open systems, Ann. Henri Poincaré 17 (2016) 3089 | DOI

[16] S Dyatlov, M Zworski, Dynamical zeta functions for Anosov flows via microlocal analysis, Ann. Sci. Éc. Norm. Supér. 49 (2016) 543 | DOI

[17] V Erlandsson, J Souto, Counting curves in hyperbolic surfaces, Geom. Funct. Anal. 26 (2016) 729 | DOI

[18] C Guillarmou, Lens rigidity for manifolds with hyperbolic trapped sets, J. Amer. Math. Soc. 30 (2017) 561 | DOI

[19] V Guillemin, Lectures on spectral theory of elliptic operators, Duke Math. J. 44 (1977) 485

[20] V Guillemin, A Pollack, Differential topology, Prentice-Hall (1974)

[21] L Guillopé, Sur la distribution des longueurs des géodésiques fermées d’une surface compacte à bord totalement géodésique, Duke Math. J. 53 (1986) 827 | DOI

[22] G Higman, B H Neumann, H Neumann, Embedding theorems for groups, J. London Math. Soc. 24 (1949) 247 | DOI

[23] L Hörmander, The analysis of linear partial differential operators, I : Distribution theory and Fourier analysis, 256, Springer (1990) | DOI

[24] A Katsuda, T Sunada, Homology and closed geodesics in a compact Riemann surface, Amer. J. Math. 110 (1988) 145 | DOI

[25] Y Kifer, Large deviations, averaging and periodic orbits of dynamical systems, Comm. Math. Phys. 162 (1994) 33 | DOI

[26] S P Lalley, Closed geodesics in homology classes on surfaces of variable negative curvature, Duke Math. J. 58 (1989) 795 | DOI

[27] S P Lalley, Renewal theorems in symbolic dynamics, with applications to geodesic flows, non-Euclidean tessellations and their fractal limits, Acta Math. 163 (1989) 1 | DOI

[28] S P Lalley, Self-intersections of closed geodesics on a negatively curved surface: statistical regularities, from: "Convergence in ergodic theory and probability" (editors V Bergelson, P March, J Rosenblatt), Ohio State Univ. Math. Res. Inst. Publ. 5, de Gruyter (1996) 263 | DOI

[29] J M Lee, Riemannian manifolds: an introduction to curvature, 176, Springer (1997) | DOI

[30] R C Lyndon, P E Schupp, Combinatorial group theory, 89, Springer (1977) | DOI

[31] G A Margulis, Certain applications of ergodic theory to the investigation of manifolds of negative curvature, Funkcional. Anal. i Priložen. 3 (1969) 89

[32] M Mirzakhani, Growth of the number of simple closed geodesics on hyperbolic surfaces, Ann. of Math. 168 (2008) 97 | DOI

[33] M Mirzakhani, Counting mapping class group orbits on hyperbolic surfaces, preprint (2016)

[34] J P Otal, Le spectre marqué des longueurs des surfaces à courbure négative, Ann. of Math. 131 (1990) 151 | DOI

[35] W Parry, M Pollicott, An analogue of the prime number theorem for closed orbits of Axiom A flows, Ann. of Math. 118 (1983) 573 | DOI

[36] W Parry, M Pollicott, Zeta functions and the periodic orbit structure of hyperbolic dynamics, 187–188, Soc. Math. France (1990) 268

[37] F Paulin, M Pollicott, B Schapira, Equilibrium states in negative curvature, 373, Soc. Math. France (2015) | DOI

[38] R Phillips, P Sarnak, Geodesics in homology classes, Duke Math. J. 55 (1987) 287 | DOI

[39] M Pollicott, Asymptotic distribution of closed geodesics, Israel J. Math. 52 (1985) 209 | DOI

[40] M Pollicott, Homology and closed geodesics in a compact negatively curved surface, Amer. J. Math. 113 (1991) 379 | DOI

[41] M Pollicott, R Sharp, Angular self-intersections for closed geodesics on surfaces, Proc. Amer. Math. Soc. 134 (2006) 419 | DOI

[42] T Roblin, Ergodicité et équidistribution en courbure négative, 95, Soc. Math. France (2003) | DOI

[43] P C Sarnak, Prime geodesic theorems, PhD thesis, Stanford University (1980)

[44] Y G Sinai, Dynamical systems with elastic reflections: ergodic properties of dispersing billiards, Uspehi Mat. Nauk 25 (1970) 141

[45] I M Singer, J A Thorpe, Lecture notes on elementary topology and geometry, Scott, Foresman and Co (1967) | DOI

Cité par Sources :