Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
Let be a closed oriented negatively curved surface, and fix a simple closed geodesic . We give the asymptotic growth as of the number of primitive closed geodesics of length less than intersecting exactly times, where is fixed positive integer. This is done by introducing a dynamical scattering operator associated to the surface with boundary obtained by cutting along and by using the theory of Pollicott–Ruelle resonances for open systems.
Chaubet, Yann 1
@article{GT_2024_28_2_a5, author = {Chaubet, Yann}, title = {Closed geodesics with prescribed intersection numbers}, journal = {Geometry & topology}, pages = {701--758}, publisher = {mathdoc}, volume = {28}, number = {2}, year = {2024}, doi = {10.2140/gt.2024.28.701}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2024.28.701/} }
Chaubet, Yann. Closed geodesics with prescribed intersection numbers. Geometry & topology, Tome 28 (2024) no. 2, pp. 701-758. doi : 10.2140/gt.2024.28.701. http://geodesic.mathdoc.fr/articles/10.2140/gt.2024.28.701/
[1] Precise counting results for closed orbits of Anosov flows, Ann. Sci. École Norm. Sup. 33 (2000) 33 | DOI
,[2] Geodesic flows on closed Riemann manifolds with negative curvature, 90, Amer. Math. Soc. (1969)
,[3] A Lefschetz fixed point formula for elliptic complexes, I, Ann. of Math. 86 (1967) 374 | DOI
, ,[4] On the measure of maximal entropy for finite horizon Sinai billiard maps, J. Amer. Math. Soc. 33 (2020) 381 | DOI
, ,[5] Exponential decay of correlations for finite horizon Sinai billiard flows, Invent. Math. 211 (2018) 39 | DOI
, , ,[6] Bouts des variétés hyperboliques de dimension 3, Ann. of Math. 124 (1986) 71 | DOI
,[7] The geometry of Teichmüller space via geodesic currents, Invent. Math. 92 (1988) 139 | DOI
,[8] Les résonances du Laplacien sur les variétés à pointes, PhD thesis, Université Paris Sud (2015)
,[9] The equidistribution of closed geodesics, Amer. J. Math. 94 (1972) 413 | DOI
,[10] Symbolic dynamics for hyperbolic flows, Amer. J. Math. 95 (1973) 429 | DOI
,[11] Metric spaces of non-positive curvature, 319, Springer (1999) | DOI
, ,[12] Remarques sur le spectre des longueurs d’une surface et comptages, Bol. Soc. Brasil. Mat. 30 (1999) 199 | DOI
,[13] Poincaré series and linking of Legendrian knots, preprint (2020)
, ,[14] Généralisation du théorème de Ikehara, Ann. Sci. École Norm. Sup. 71 (1954) 213 | DOI
,[15] Pollicott–Ruelle resonances for open systems, Ann. Henri Poincaré 17 (2016) 3089 | DOI
, ,[16] Dynamical zeta functions for Anosov flows via microlocal analysis, Ann. Sci. Éc. Norm. Supér. 49 (2016) 543 | DOI
, ,[17] Counting curves in hyperbolic surfaces, Geom. Funct. Anal. 26 (2016) 729 | DOI
, ,[18] Lens rigidity for manifolds with hyperbolic trapped sets, J. Amer. Math. Soc. 30 (2017) 561 | DOI
,[19] Lectures on spectral theory of elliptic operators, Duke Math. J. 44 (1977) 485
,[20] Differential topology, Prentice-Hall (1974)
, ,[21] Sur la distribution des longueurs des géodésiques fermées d’une surface compacte à bord totalement géodésique, Duke Math. J. 53 (1986) 827 | DOI
,[22] Embedding theorems for groups, J. London Math. Soc. 24 (1949) 247 | DOI
, , ,[23] The analysis of linear partial differential operators, I : Distribution theory and Fourier analysis, 256, Springer (1990) | DOI
,[24] Homology and closed geodesics in a compact Riemann surface, Amer. J. Math. 110 (1988) 145 | DOI
, ,[25] Large deviations, averaging and periodic orbits of dynamical systems, Comm. Math. Phys. 162 (1994) 33 | DOI
,[26] Closed geodesics in homology classes on surfaces of variable negative curvature, Duke Math. J. 58 (1989) 795 | DOI
,[27] Renewal theorems in symbolic dynamics, with applications to geodesic flows, non-Euclidean tessellations and their fractal limits, Acta Math. 163 (1989) 1 | DOI
,[28] Self-intersections of closed geodesics on a negatively curved surface: statistical regularities, from: "Convergence in ergodic theory and probability" (editors V Bergelson, P March, J Rosenblatt), Ohio State Univ. Math. Res. Inst. Publ. 5, de Gruyter (1996) 263 | DOI
,[29] Riemannian manifolds: an introduction to curvature, 176, Springer (1997) | DOI
,[30] Combinatorial group theory, 89, Springer (1977) | DOI
, ,[31] Certain applications of ergodic theory to the investigation of manifolds of negative curvature, Funkcional. Anal. i Priložen. 3 (1969) 89
,[32] Growth of the number of simple closed geodesics on hyperbolic surfaces, Ann. of Math. 168 (2008) 97 | DOI
,[33] Counting mapping class group orbits on hyperbolic surfaces, preprint (2016)
,[34] Le spectre marqué des longueurs des surfaces à courbure négative, Ann. of Math. 131 (1990) 151 | DOI
,[35] An analogue of the prime number theorem for closed orbits of Axiom A flows, Ann. of Math. 118 (1983) 573 | DOI
, ,[36] Zeta functions and the periodic orbit structure of hyperbolic dynamics, 187–188, Soc. Math. France (1990) 268
, ,[37] Equilibrium states in negative curvature, 373, Soc. Math. France (2015) | DOI
, , ,[38] Geodesics in homology classes, Duke Math. J. 55 (1987) 287 | DOI
, ,[39] Asymptotic distribution of closed geodesics, Israel J. Math. 52 (1985) 209 | DOI
,[40] Homology and closed geodesics in a compact negatively curved surface, Amer. J. Math. 113 (1991) 379 | DOI
,[41] Angular self-intersections for closed geodesics on surfaces, Proc. Amer. Math. Soc. 134 (2006) 419 | DOI
, ,[42] Ergodicité et équidistribution en courbure négative, 95, Soc. Math. France (2003) | DOI
,[43] Prime geodesic theorems, PhD thesis, Stanford University (1980)
,[44] Dynamical systems with elastic reflections: ergodic properties of dispersing billiards, Uspehi Mat. Nauk 25 (1970) 141
,[45] Lecture notes on elementary topology and geometry, Scott, Foresman and Co (1967) | DOI
, ,Cité par Sources :