Configuration spaces of disks in a strip, twisted algebras, persistence, and other stories
Geometry & topology, Tome 28 (2024) no. 2, pp. 641-699.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

We give –bases for the homology and cohomology of the configuration space of n unit disks in an infinite strip of width w, first studied by Alpert, Kahle and MacPherson. We also study the way these spaces evolve both as n increases (using the framework of representation stability) and as w increases (using the framework of persistent homology). Finally, we include some results about the cup product in the cohomology and about the configuration space of unordered disks.

DOI : 10.2140/gt.2024.28.641
Keywords: configuration space, pure braid group, representation stability, twisted commutative algebra, permutohedron, discrete Morse theory, persistent homology, motion planning

Alpert, Hannah 1 ; Manin, Fedor 2

1 Department of Mathematics and Statistics, Auburn University, Auburn, AL, United States
2 Department of Mathematics, University of California, Santa Barbara, Santa Barbara, CA, United States
@article{GT_2024_28_2_a4,
     author = {Alpert, Hannah and Manin, Fedor},
     title = {Configuration spaces of disks in a strip, twisted algebras, persistence, and other stories},
     journal = {Geometry & topology},
     pages = {641--699},
     publisher = {mathdoc},
     volume = {28},
     number = {2},
     year = {2024},
     doi = {10.2140/gt.2024.28.641},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2024.28.641/}
}
TY  - JOUR
AU  - Alpert, Hannah
AU  - Manin, Fedor
TI  - Configuration spaces of disks in a strip, twisted algebras, persistence, and other stories
JO  - Geometry & topology
PY  - 2024
SP  - 641
EP  - 699
VL  - 28
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2024.28.641/
DO  - 10.2140/gt.2024.28.641
ID  - GT_2024_28_2_a4
ER  - 
%0 Journal Article
%A Alpert, Hannah
%A Manin, Fedor
%T Configuration spaces of disks in a strip, twisted algebras, persistence, and other stories
%J Geometry & topology
%D 2024
%P 641-699
%V 28
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2024.28.641/
%R 10.2140/gt.2024.28.641
%F GT_2024_28_2_a4
Alpert, Hannah; Manin, Fedor. Configuration spaces of disks in a strip, twisted algebras, persistence, and other stories. Geometry & topology, Tome 28 (2024) no. 2, pp. 641-699. doi : 10.2140/gt.2024.28.641. http://geodesic.mathdoc.fr/articles/10.2140/gt.2024.28.641/

[1] H Alpert, Discrete configuration spaces of squares and hexagons, J. Appl. Comput. Topol. 4 (2020) 263 | DOI

[2] H Alpert, M Kahle, R Macpherson, Configuration spaces of disks in an infinite strip, J. Appl. Comput. Topol. 5 (2021) 357 | DOI

[3] H Alpert, U Bauer, M Kahle, R Macpherson, K Spendlove, Homology of configuration spaces of hard squares in a rectangle, Algebr. Geom. Topol. 23 (2023) 2593 | DOI

[4] V I Arnold, The cohomology ring of the colored braid group, Mat. Zametki 5 (1969) 227

[5] Y Baryshnikov, P Bubenik, M Kahle, Min-type Morse theory for configuration spaces of hard spheres, Int. Math. Res. Not. 2014 (2014) 2577 | DOI

[6] U Bauer, Ripser : efficient computation of Vietoris–Rips persistence barcodes, J. Appl. Comput. Topol. 5 (2021) 391 | DOI

[7] A Björner, Random walks, arrangements, cell complexes, greedoids, and self-organizing libraries, from: "Building bridges" (editors M Grötschel, G O H Katona), Bolyai Soc. Math. Stud. 19, Springer (2008) 165 | DOI

[8] A Björner, V Welker, The homology of “k–equal” manifolds and related partition lattices, Adv. Math. 110 (1995) 277 | DOI

[9] P V M Blagojević, G M Ziegler, Convex equipartitions via equivariant obstruction theory, Israel J. Math. 200 (2014) 49 | DOI

[10] G Carlsson, J Gorham, M Kahle, J Mason, Computational topology for configuration spaces of hard disks, Phys. Rev. E 85 (2012) 011303 | DOI

[11] F R Cohen, The homology of Cn+1-spaces, n ≥ 0, from: "The homology of iterated loop spaces" (editors F R Cohen, T J Lada, J P May), Lecture Notes in Math. 533, Springer (1976) 207 | DOI

[12] P Diaconis, The Markov chain Monte Carlo revolution, Bull. Amer. Math. Soc. 46 (2009) 179 | DOI

[13] H Edelsbrunner, J Harer, Persistent homology: a survey, from: "Surveys on discrete and computational geometry" (editors J E Goodman, J Pach, R Pollack), Contemp. Math. 453, Amer. Math. Soc. (2008) 257 | DOI

[14] M Farber, Invitation to topological robotics, Eur. Math. Soc. (2008) | DOI

[15] R Forman, A user’s guide to discrete Morse theory, Sém. Lothar. Combin. 48 (2002)

[16] M Kahle, Sparse locally-jammed disk packings, Ann. Comb. 16 (2012) 773 | DOI

[17] S Mac Lane, Categories for the working mathematician, 5, Springer (1998) | DOI

[18] J Miller, J C H Wilson, Higher-order representation stability and ordered configuration spaces of manifolds, Geom. Topol. 23 (2019) 2519 | DOI

[19] E Ramos, Generalized representation stability and FId–modules, Proc. Amer. Math. Soc. 145 (2017) 4647 | DOI

[20] E Ramos, Configuration spaces of graphs with certain permitted collisions, Discrete Comput. Geom. 62 (2019) 912 | DOI

[21] E Riehl, Category theory in context, Dover (2017)

[22] S V Sam, A Snowden, Introduction to twisted commutative algebras, preprint (2012)

[23] S V Sam, A Snowden, Gröbner methods for representations of combinatorial categories, J. Amer. Math. Soc. 30 (2017) 159 | DOI

[24] D P Sinha, The (non-equivariant) homology of the little disks operad, from: "OPERADS 2009" (editors J L Loday, B Vallette), Sémin. Congr. 26, Soc. Math. France (2013) 253

[25] G M Ziegler, Lectures on polytopes, 152, Springer (1995) | DOI

[26] A Zomorodian, G Carlsson, Computing persistent homology, Discrete Comput. Geom. 33 (2005) 249 | DOI

Cité par Sources :