Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
We give –bases for the homology and cohomology of the configuration space of unit disks in an infinite strip of width , first studied by Alpert, Kahle and MacPherson. We also study the way these spaces evolve both as increases (using the framework of representation stability) and as increases (using the framework of persistent homology). Finally, we include some results about the cup product in the cohomology and about the configuration space of unordered disks.
Alpert, Hannah 1 ; Manin, Fedor 2
@article{GT_2024_28_2_a4, author = {Alpert, Hannah and Manin, Fedor}, title = {Configuration spaces of disks in a strip, twisted algebras, persistence, and other stories}, journal = {Geometry & topology}, pages = {641--699}, publisher = {mathdoc}, volume = {28}, number = {2}, year = {2024}, doi = {10.2140/gt.2024.28.641}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2024.28.641/} }
TY - JOUR AU - Alpert, Hannah AU - Manin, Fedor TI - Configuration spaces of disks in a strip, twisted algebras, persistence, and other stories JO - Geometry & topology PY - 2024 SP - 641 EP - 699 VL - 28 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/gt.2024.28.641/ DO - 10.2140/gt.2024.28.641 ID - GT_2024_28_2_a4 ER -
%0 Journal Article %A Alpert, Hannah %A Manin, Fedor %T Configuration spaces of disks in a strip, twisted algebras, persistence, and other stories %J Geometry & topology %D 2024 %P 641-699 %V 28 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.2140/gt.2024.28.641/ %R 10.2140/gt.2024.28.641 %F GT_2024_28_2_a4
Alpert, Hannah; Manin, Fedor. Configuration spaces of disks in a strip, twisted algebras, persistence, and other stories. Geometry & topology, Tome 28 (2024) no. 2, pp. 641-699. doi : 10.2140/gt.2024.28.641. http://geodesic.mathdoc.fr/articles/10.2140/gt.2024.28.641/
[1] Discrete configuration spaces of squares and hexagons, J. Appl. Comput. Topol. 4 (2020) 263 | DOI
,[2] Configuration spaces of disks in an infinite strip, J. Appl. Comput. Topol. 5 (2021) 357 | DOI
, , ,[3] Homology of configuration spaces of hard squares in a rectangle, Algebr. Geom. Topol. 23 (2023) 2593 | DOI
, , , , ,[4] The cohomology ring of the colored braid group, Mat. Zametki 5 (1969) 227
,[5] Min-type Morse theory for configuration spaces of hard spheres, Int. Math. Res. Not. 2014 (2014) 2577 | DOI
, , ,[6] Ripser : efficient computation of Vietoris–Rips persistence barcodes, J. Appl. Comput. Topol. 5 (2021) 391 | DOI
,[7] Random walks, arrangements, cell complexes, greedoids, and self-organizing libraries, from: "Building bridges" (editors M Grötschel, G O H Katona), Bolyai Soc. Math. Stud. 19, Springer (2008) 165 | DOI
,[8] The homology of “k–equal” manifolds and related partition lattices, Adv. Math. 110 (1995) 277 | DOI
, ,[9] Convex equipartitions via equivariant obstruction theory, Israel J. Math. 200 (2014) 49 | DOI
, ,[10] Computational topology for configuration spaces of hard disks, Phys. Rev. E 85 (2012) 011303 | DOI
, , , ,[11] The homology of Cn+1-spaces, n ≥ 0, from: "The homology of iterated loop spaces" (editors F R Cohen, T J Lada, J P May), Lecture Notes in Math. 533, Springer (1976) 207 | DOI
,[12] The Markov chain Monte Carlo revolution, Bull. Amer. Math. Soc. 46 (2009) 179 | DOI
,[13] Persistent homology: a survey, from: "Surveys on discrete and computational geometry" (editors J E Goodman, J Pach, R Pollack), Contemp. Math. 453, Amer. Math. Soc. (2008) 257 | DOI
, ,[14] Invitation to topological robotics, Eur. Math. Soc. (2008) | DOI
,[15] A user’s guide to discrete Morse theory, Sém. Lothar. Combin. 48 (2002)
,[16] Sparse locally-jammed disk packings, Ann. Comb. 16 (2012) 773 | DOI
,[17] Categories for the working mathematician, 5, Springer (1998) | DOI
,[18] Higher-order representation stability and ordered configuration spaces of manifolds, Geom. Topol. 23 (2019) 2519 | DOI
, ,[19] Generalized representation stability and FId–modules, Proc. Amer. Math. Soc. 145 (2017) 4647 | DOI
,[20] Configuration spaces of graphs with certain permitted collisions, Discrete Comput. Geom. 62 (2019) 912 | DOI
,[21] Category theory in context, Dover (2017)
,[22] Introduction to twisted commutative algebras, preprint (2012)
, ,[23] Gröbner methods for representations of combinatorial categories, J. Amer. Math. Soc. 30 (2017) 159 | DOI
, ,[24] The (non-equivariant) homology of the little disks operad, from: "OPERADS 2009" (editors J L Loday, B Vallette), Sémin. Congr. 26, Soc. Math. France (2013) 253
,[25] Lectures on polytopes, 152, Springer (1995) | DOI
,[26] Computing persistent homology, Discrete Comput. Geom. 33 (2005) 249 | DOI
, ,Cité par Sources :