Valuations on the character variety: Newton polytopes and residual Poisson bracket
Geometry & topology, Tome 28 (2024) no. 2, pp. 593-625.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

We study the space of measured laminations ML on a closed surface from the valuative point of view. We introduce and study a notion of Newton polytope for an algebraic function on the character variety. We prove, for instance, that trace functions have unit coefficients at the extremal points of their Newton polytope. Then we provide a definition of tangent space at a valuation and show how the Goldman Poisson bracket on the character variety induces a symplectic structure on this valuative model for ML. Finally, we identify this symplectic space with previous constructions due to Thurston and Bonahon.

DOI : 10.2140/gt.2024.28.593
Keywords: surface group, measured lamination, character variety, valuation, Newton polytope, Poisson bracket, Goldman Poisson bracket, real tree, symplectic structure, skein algebra

Marché, Julien 1 ; Simon, Christopher-Lloyd 2

1 Sorbonne Université, Paris, France
2 Laboratoire Paul Painlevé UMR CNRS, Université de Lille, Lille, France
@article{GT_2024_28_2_a2,
     author = {March\'e, Julien and Simon, Christopher-Lloyd},
     title = {Valuations on the character variety: {Newton} polytopes and residual {Poisson} bracket},
     journal = {Geometry & topology},
     pages = {593--625},
     publisher = {mathdoc},
     volume = {28},
     number = {2},
     year = {2024},
     doi = {10.2140/gt.2024.28.593},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2024.28.593/}
}
TY  - JOUR
AU  - Marché, Julien
AU  - Simon, Christopher-Lloyd
TI  - Valuations on the character variety: Newton polytopes and residual Poisson bracket
JO  - Geometry & topology
PY  - 2024
SP  - 593
EP  - 625
VL  - 28
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2024.28.593/
DO  - 10.2140/gt.2024.28.593
ID  - GT_2024_28_2_a2
ER  - 
%0 Journal Article
%A Marché, Julien
%A Simon, Christopher-Lloyd
%T Valuations on the character variety: Newton polytopes and residual Poisson bracket
%J Geometry & topology
%D 2024
%P 593-625
%V 28
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2024.28.593/
%R 10.2140/gt.2024.28.593
%F GT_2024_28_2_a2
Marché, Julien; Simon, Christopher-Lloyd. Valuations on the character variety: Newton polytopes and residual Poisson bracket. Geometry & topology, Tome 28 (2024) no. 2, pp. 593-625. doi : 10.2140/gt.2024.28.593. http://geodesic.mathdoc.fr/articles/10.2140/gt.2024.28.593/

[1] F Bonahon, Earthquakes on Riemann surfaces and on measured geodesic laminations, Trans. Amer. Math. Soc. 330 (1992) 69 | DOI

[2] F Bonahon, Shearing hyperbolic surfaces, bending pleated surfaces and Thurston’s symplectic form, Ann. Fac. Sci. Toulouse Math. 5 (1996) 233 | DOI

[3] G W Brumfiel, H M Hilden, SL(2) representations of finitely presented groups, 187, Amer. Math. Soc. (1995) | DOI

[4] D Bullock, Rings of SL2(C)–characters and the Kauffman bracket skein module, Comment. Math. Helv. 72 (1997) 521 | DOI

[5] D Bullock, C Frohman, J Kania-Bartoszyńska, Understanding the Kauffman bracket skein module, J. Knot Theory Ramifications 8 (1999) 265 | DOI

[6] M J Conder, F Paulin, The translation length of the product of hyperbolic isometries of R–trees,

[7] W M Goldman, The symplectic nature of fundamental groups of surfaces, Adv. in Math. 54 (1984) 200 | DOI

[8] J Hass, P Scott, Shortening curves on surfaces, Topology 33 (1994) 25 | DOI

[9] E Lindenstrauss, M Mirzakhani, Ergodic theory of the space of measured laminations, Int. Math. Res. Not. 2008 (2008) | DOI

[10] F Luo, Simple loops on surfaces and their intersection numbers, J. Differential Geom. 85 (2010) 73

[11] W Magnus, The uses of 2 by 2 matrices in combinatorial group theory : a survey, Results Math. 4 (1981) 171 | DOI

[12] J Marché, C L Simon, Automorphisms of character varieties, Ann. H. Lebesgue 4 (2021) 591 | DOI

[13] M Mirzakhani, Counting mapping class group orbits on hyperbolic surfaces, preprint (2016)

[14] J W Morgan, P B Shalen, Valuations, trees, and degenerations of hyperbolic structures, I, Ann. of Math. 120 (1984) 401 | DOI

[15] J P Otal, The hyperbolization theorem for fibered 3–manifolds, 7, Amer. Math. Soc. (2001)

[16] J P Otal, Compactification of spaces of representations after Culler, Morgan and Shalen, from: "Berkovich spaces and applications" (editors A Ducros, C Favre, J Nicaise), Lecture Notes in Math. 2119, Springer (2015) 367 | DOI

[17] A Papadopoulos, R C Penner, La forme symplectique de Weil–Petersson et le bord de Thurston de l’espace de Teichmüller, C. R. Acad. Sci. Paris Sér. I Math. 312 (1991) 871

[18] F Paulin, The Gromov topology on R–trees, Topology Appl. 32 (1989) 197 | DOI

[19] R C Penner, J L Harer, Combinatorics of train tracks, 125, Princeton Univ. Press (1992) | DOI

[20] J H Przytycki, A S Sikora, On skein algebras and Sl2(C)–character varieties, Topology 39 (2000) 115 | DOI

[21] K Rafi, J Souto, Geodesic currents and counting problems, Geom. Funct. Anal. 29 (2019) 871 | DOI

[22] Y Sözen, F Bonahon, The Weil–Petersson and Thurston symplectic forms, Duke Math. J. 108 (2001) 581 | DOI

[23] D Thurston, Geometric intersection of curves on surfaces, preprint (2009)

[24] D P Thurston, Positive basis for surface skein algebras, Proc. Natl. Acad. Sci. USA 111 (2014) 9725 | DOI

[25] M Vaquié, Valuations, from: "Resolution of singularities" (editors H Hauser, J Lipman, F Oort, A Quirós), Progr. Math. 181, Birkhäuser (2000) 539

[26] M Wolff, Connected components of the compactification of representation spaces of surface groups, Geom. Topol. 15 (2011) 1225 | DOI

Cité par Sources :