Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
We prove that for any Fano manifold , the special –test configuration that minimizes the –functional is unique and has a K–semistable –Fano central fiber . Moreover there is a unique K–polystable degeneration of . As an application, we confirm the conjecture of Chen, Sun and Wang about the algebraic uniqueness for Kähler–Ricci flow limits on Fano manifolds, which implies that the Gromov–Hausdorff limit of the flow does not depend on the choice of initial Kähler metrics. The results are achieved by studying algebraic optimal degeneration problems via new functionals for real valuations over –Fano varieties, which are analogous to the minimization problem for normalized volumes.
Han, Jiyuan 1 ; Li, Chi 2
@article{GT_2024_28_2_a1, author = {Han, Jiyuan and Li, Chi}, title = {Algebraic uniqueness of {K\"ahler{\textendash}Ricci} flow limits and optimal degenerations of {Fano} varieties}, journal = {Geometry & topology}, pages = {539--592}, publisher = {mathdoc}, volume = {28}, number = {2}, year = {2024}, doi = {10.2140/gt.2024.28.539}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2024.28.539/} }
TY - JOUR AU - Han, Jiyuan AU - Li, Chi TI - Algebraic uniqueness of Kähler–Ricci flow limits and optimal degenerations of Fano varieties JO - Geometry & topology PY - 2024 SP - 539 EP - 592 VL - 28 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/gt.2024.28.539/ DO - 10.2140/gt.2024.28.539 ID - GT_2024_28_2_a1 ER -
%0 Journal Article %A Han, Jiyuan %A Li, Chi %T Algebraic uniqueness of Kähler–Ricci flow limits and optimal degenerations of Fano varieties %J Geometry & topology %D 2024 %P 539-592 %V 28 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.2140/gt.2024.28.539/ %R 10.2140/gt.2024.28.539 %F GT_2024_28_2_a1
Han, Jiyuan; Li, Chi. Algebraic uniqueness of Kähler–Ricci flow limits and optimal degenerations of Fano varieties. Geometry & topology, Tome 28 (2024) no. 2, pp. 539-592. doi : 10.2140/gt.2024.28.539. http://geodesic.mathdoc.fr/articles/10.2140/gt.2024.28.539/
[1] K–stability of Fano varieties via admissible flags, Forum Math. Pi 10 (2022) | DOI
, ,[2] Polyhedral divisors and algebraic torus actions, Math. Ann. 334 (2006) 557 | DOI
, ,[3] Gluing affine torus actions via divisorial fans, Transform. Groups 13 (2008) 215 | DOI
, , ,[4] Convergence of Ricci flows with bounded scalar curvature, Ann. of Math. 188 (2018) 753 | DOI
,[5] K–polystability of Q–Fano varieties admitting Kähler–Einstein metrics, Invent. Math. 203 (2016) 973 | DOI
,[6] Kähler–Einstein metrics and the Kähler–Ricci flow on log Fano varieties, J. Reine Angew. Math. 751 (2019) 27 | DOI
, , , , ,[7] A variational approach to the Yau–Tian–Donaldson conjecture, J. Amer. Math. Soc. 34 (2021) 605 | DOI
, , ,[8] Complex optimal transport and the pluripotential theory of Kähler–Ricci solitons, preprint (2014)
, ,[9] Existence of minimal models for varieties of log general type, J. Amer. Math. Soc. 23 (2010) 405 | DOI
, , , ,[10] Existence of valuations with smallest normalized volume, Compos. Math. 154 (2018) 820 | DOI
,[11] Thresholds, valuations, and K–stability, Adv. Math. 365 (2020) 107062 | DOI
, ,[12] The normalized volume of a singularity is lower semicontinuous, J. Eur. Math. Soc. 23 (2021) 1225 | DOI
, ,[13] Openness of uniform K–stability in families of Q–Fano varieties, Ann. Sci. Éc. Norm. Supér. 55 (2022) 1 | DOI
, ,[14] Openness of K–semistability for Fano varieties, Duke Math. J. 171 (2022) 2753 | DOI
, , ,[15] The existence of the Kähler–Ricci soliton degeneration, Forum Math. Pi 11 (2023) | DOI
, , , ,[16] Optimal destabilization of K–unstable Fano varieties via stability thresholds, Geom. Topol. 26 (2022) 2507 | DOI
, , ,[17] Okounkov bodies of filtered linear series, Compos. Math. 147 (2011) 1205 | DOI
, ,[18] Spaces of norms, determinant of cohomology and Fekete points in non-Archimedean geometry, Adv. Math. 378 (2021) 107501 | DOI
, ,[19] Uniform K–stability, Duistermaat–Heckman measures and singularities of pairs, Ann. Inst. Fourier (Grenoble) 67 (2017) 743 | DOI
, , ,[20] A non-Archimedean approach to K–stability, preprint (2018)
, ,[21] A non-Archimedean approach to K–stability, I : Metric geometry of spaces of test configurations and valuations, preprint (2021)
, ,[22] Vanishing sequences and Okounkov bodies, Math. Ann. 361 (2015) 811 | DOI
, , , ,[23] Sur l’image de l’application moment, from: "Séminaire d’algèbre Paul Dubreil et Marie-Paule Malliavin" (editor M P Malliavin), Lecture Notes in Math. 1296, Springer (1987) 177 | DOI
,[24] Distribution of logarithmic spectra of the equilibrium energy, Manuscripta Math. 146 (2015) 365 | DOI
, ,[25] Kähler–Einstein metrics on Fano manifolds, I : Approximation of metrics with cone singularities, J. Amer. Math. Soc. 28 (2015) 183 | DOI
, , ,[26] Kähler–Einstein metrics on Fano manifolds, II : Limits with cone angle less than 2π, J. Amer. Math. Soc. 28 (2015) 199 | DOI
, , ,[27] Kähler–Einstein metrics on Fano manifolds, III : Limits as cone angle approaches 2π and completion of the main proof, J. Amer. Math. Soc. 28 (2015) 235 | DOI
, , ,[28] Kähler–Ricci flow, Kähler–Einstein metric, and K–stability, Geom. Topol. 22 (2018) 3145 | DOI
, , ,[29] Space of Ricci flows, II : Part B : weak compactness of the flows, J. Differential Geom. 116 (2020) 1 | DOI
, ,[30] Geodesic rays and Kähler–Ricci trajectories on Fano manifolds, Trans. Amer. Math. Soc. 369 (2017) 5069 | DOI
, ,[31] The Kähler–Ricci flow and optimal degenerations, J. Differential Geom. 116 (2020) 187 | DOI
, ,[32] Scalar curvature and stability of toric varieties, J. Differential Geom. 62 (2002) 289
,[33] Lower bounds on the Calabi functional, J. Differential Geom. 70 (2005) 453
,[34] Gromov–Hausdorff limits of Kähler manifolds and algebraic geometry, II, J. Differential Geom. 107 (2017) 327 | DOI
, ,[35] Uniform approximation of Abhyankar valuation ideals in smooth function fields, Amer. J. Math. 125 (2003) 409 | DOI
, , ,[36] Optimal bounds for the volumes of Kähler–Einstein Fano manifolds, Amer. J. Math. 140 (2018) 391 | DOI
,[37] A valuative criterion for uniform K–stability of Q–Fano varieties, J. Reine Angew. Math. 751 (2019) 309 | DOI
,[38] On the K–stability of Fano varieties and anticanonical divisors, Tohoku Math. J. 70 (2018) 511 | DOI
, ,[39] On the Yau–Tian–Donaldson conjecture for generalized Kähler–Ricci soliton equations, Comm. Pure Appl. Math. 76 (2023) 1793 | DOI
, ,[40] Kähler–Ricci soliton and H–functional, Asian J. Math. 20 (2016) 645 | DOI
,[41] Stability and coercivity for toric polarizations, preprint (2016)
,[42] Mabuchi’s soliton metric and relative D–stability, preprint (2019)
,[43] Geometric flow, multiplier ideal sheaves and optimal destabilizer for a Fano manifold, J. Geom. Anal. 33 (2023) 265 | DOI
,[44] Valuations and asymptotic invariants for sequences of ideals, Ann. Inst. Fourier (Grenoble) 62 (2012) 2145 | DOI
, ,[45] Newton–Okounkov bodies, semigroups of integral points, graded algebras and intersection theory, Ann. of Math. 176 (2012) 925 | DOI
, ,[46] Convex bodies and multiplicities of ideals, Proc. Steklov Inst. Math. 286 (2014) 268 | DOI
, ,[47] Projectivity of the moduli space of stable log-varieties and subadditivity of log-Kodaira dimension, J. Amer. Math. Soc. 30 (2017) 959 | DOI
, ,[48] Positivity in algebraic geometry, II : Positivity for vector bundles, and multiplier ideals, 49, Springer (2004) | DOI
,[49] Convex bodies associated to linear series, Ann. Sci. Éc. Norm. Supér. 42 (2009) 783 | DOI
, ,[50] K-semistability is equivariant volume minimization, Duke Math. J. 166 (2017) 3147 | DOI
,[51] Minimizing normalized volumes of valuations, Math. Z. 289 (2018) 491 | DOI
,[52] G–uniform stability and Kähler–Einstein metrics on Fano varieties, Invent. Math. 227 (2022) 661 | DOI
,[53] Kähler–Einstein metrics and volume minimization, Adv. Math. 341 (2019) 440 | DOI
, ,[54] A guided tour to normalized volume, from: "Geometric analysis : in honor of Gang Tian’s 60th birthday" (editors J Chen, P Lu, Z Lu, Z Zhang), Progr. Math. 333, Springer (2020) 167 | DOI
, , ,[55] Algebraicity of the metric tangent cones and equivariant K–stability, J. Amer. Math. Soc. 34 (2021) 1175 | DOI
, , ,[56] Special test configuration and K–stability of Fano varieties, Ann. of Math. 180 (2014) 197 | DOI
, ,[57] Stability of valuations: higher rational rank, Peking Math. J. 1 (2018) 1 | DOI
, ,[58] Stability of valuations and Kollár components, J. Eur. Math. Soc. 22 (2020) 2573 | DOI
, ,[59] Equivariant R–test configurations and semistable limits of Q–Fano group compactifications, preprint (2021)
, ,[60] The volume of singular Kähler–Einstein Fano varieties, Compos. Math. 154 (2018) 1131 | DOI
,[61] Stability of projective varieties, Enseign. Math. 23 (1977) 39
,[62] Brunn–Minkowski inequality for multiplicities, Invent. Math. 125 (1996) 405 | DOI
,[63] Equivariant multiplicities on complex varieties, from: "Orbites unipotentes et représentations, III" (editor M Andler), Astérisque 173–174, Soc. Math. France (1989) 313
,[64] Filtrations and test-configurations, Math. Ann. 362 (2015) 451 | DOI
,[65] The partial C0–estimate along the continuity method, J. Amer. Math. Soc. 29 (2016) 537 | DOI
,[66] Valuations, deformations, and toric geometry, from: "Valuation theory and its applications, II" (editors F V Kuhlmann, S Kuhlmann, M Marshall), Fields Inst. Commun. 33, Amer. Math. Soc. (2003) 361
,[67] Kähler–Einstein metrics with positive scalar curvature, Invent. Math. 130 (1997) 1 | DOI
,[68] K–stability and Kähler–Einstein metrics, Comm. Pure Appl. Math. 68 (2015) 1085 | DOI
,[69] Perelman’s entropy and Kähler–Ricci flow on a Fano manifold, Trans. Amer. Math. Soc. 365 (2013) 6669 | DOI
, , , ,[70] Regularity of Kähler–Ricci flows on Fano manifolds, Acta Math. 216 (2016) 127 | DOI
, ,[71] A new holomorphic invariant and uniqueness of Kähler–Ricci solitons, Comment. Math. Helv. 77 (2002) 297 | DOI
, ,[72] Convergence of Kähler–Ricci flow, J. Amer. Math. Soc. 20 (2007) 675 | DOI
, ,[73] Tian’s partial C0–estimate implies Hamilton–Tian’s conjecture, Adv. Math. 381 (2021) 107619 | DOI
, ,[74] Uniformly strong convergence of Kähler–Ricci flows on a Fano manifold, Sci. China Math. 65 (2022) 2337 | DOI
, ,[75] Kähler–Ricci solitons on toric manifolds with positive first Chern class, Adv. Math. 188 (2004) 87 | DOI
, ,[76] Test configurations and Okounkov bodies, Compos. Math. 148 (2012) 1736 | DOI
,[77] On sharp lower bounds for Calabi-type functionals and destabilizing properties of gradient flows, Anal. PDE 14 (2021) 1951 | DOI
,[78] A minimizing valuation is quasi-monomial, Ann. of Math. 191 (2020) 1003 | DOI
,[79] On positivity of the CM line bundle on K–moduli spaces, Ann. of Math. 192 (2020) 1005 | DOI
, ,[80] Uniqueness of the minimizer of the normalized volume function, Camb. J. Math. 9 (2021) 149 | DOI
, ,[81] Relative Ding stability and an obstruction to the existence of Mabuchi solitons, J. Geom. Anal. 32 (2022) 105 | DOI
,Cité par Sources :